
You Can’t Judge a Binary by Its Header:
Data-Code Separation for Non-Standard ARM Binaries using Pseudo Labels

Hadjer Benkraouda
University of Illinois at

Urbana-Champaign
hadjerb2@illinois.edu

Nirav Diwan
University of Illinois at

Urbana-Champaign
ndiwan2@illinois.edu

Gang Wang
University of Illinois at

Urbana-Champaign
gangw@illinois.edu

Abstract—Static binary analysis is critical to various security
tasks such as vulnerability discovery and malware detection.
In recent years, binary analysis has faced new challenges
as vendors of the Internet of Things (IoT) and Industrial
Control Systems (ICS) continue to introduce customized or
non-standard binary formats that existing tools cannot readily
process. Reverse-engineering each of the new formats is costly
as it requires extensive expertise and analysts’ time. In this
paper, we investigate the first step to automate the analysis
of non-standard binaries, which is to recognize the bytes
representing “code” from “data” (i.e., data-code separation).
We propose Loadstar, and its key idea is to use the abundant
labeled data from standard binaries to train a classifier and
adapt it for processing unlabeled non-standard binaries. We
use a pseudo-label-based method for domain adaption and
leverage knowledge-inspired rules for pseudo-label correction,
which serves as the guardrail for the adaption process. A key
advantage of the system is that it does not require labeling any
non-standard binaries. Using three datasets of non-standard
PLC binaries, we evaluate Loadstar and show it outperforms
existing tools in terms of both accuracy and processing speed.
We will share the tool (open source) with the community.

1. Introduction

Static binary analysis is critical to a range of security
tasks such as vulnerability discovery, malware detection, and
control flow integrity protection [1]–[4]. In practice, software
(including malware) of real-world systems is commonly pre-
sented in the form of binary executables without source code.
The ability to parse and analyze binaries (e.g., disassembling
a binary and reconstructing its control flow graph) is the
precondition for the aforementioned security analytics tasks.

However, binary analysis has faced new challenges as the
Internet of Things (IoT) and Industrial Control Systems (ICS)
continue to introduce non-standard binaries to the ecosystem.
These non-standard binaries do not follow well-documented
formats and cannot be readily parsed by existing tools such
as Ghidra [5], IDA Pro [6], and Radare2 [7]. Unlike standard
binaries such as ELF, PE, and Mach-O that are organized
into sections (e.g., .text, .data) with headers that list the
section addresses, non-standard binaries can have different

file formats for different devices and vary from one vendor
to another. This happens for many reasons. First, IoT and
ICS binaries are often compiled for atypical, specialized, or
legacy operating systems (e.g., Nucleus or embedded Linux
with a real-time patch) that do not conform to standard file
formats. Second, due to the lack of standardization and the
need to keep their software proprietary, IoT vendors often
create customized file formats without public documentation.
This results in unknown (non-standard) binary file formats
that do not have a recognizable layout/configuration [8], [9].
Manually reverse engineering the format of each of these
devices can have significant time costs.

Despite the extensive efforts to develop binary analysis
tools [10]–[16], most of them cannot handle non-standard
binaries. This is because existing tools commonly require
parsing and preprocessing the input binaries to extract the
code sections (e.g., based on known formats, using tools such
as Ghidra [5] and IDA Pro [6]). In addition, some of them
may even rely on information that is not easily extracted
from non-standard binaries (e.g., headers, symbol tables,
debug information). In our preliminary tests (Section 2.3),
we attempted to use both commercial tools [5]–[7] and
research-based tools [10]–[12] to load and analyze non-
standard binaries. Most of the tools cannot proceed due
to unrecognizable binary formats.

Goal and Method. In this paper, we investigate the very
first step to analyze non-standard binaries, which is to parse
the binaries to recognize bytes that represent “code” and
“data” (i.e., data-code separation). This step is important for
a range of downstream analyses (e.g., accurate disassembly,
code similarity analysis, and function/signature detection)
because most of these analyses need to take the code sections
as inputs to perform further analysis. We propose to address
the problem by training a machine learning classifier based
on standard binaries, and then adapting the classifier to the
target non-standard binary formats. To ensure practicality,
the system has two main assumptions. First, the system does
not require any labeled non-standard binary files (considering
the high costs of manually reverse engineering non-standard
binaries). Second, the system assumes the availability of
labeled standard binaries, which can be easily achieved by

parsing standard binaries with existing tools (e.g., Ghidra)
based on their known formats.

We design a system called Loadstar, based on two high-
level intuitions. First, the code sections in binary executables
follow language-specific patterns and semantics, but the data
sections do not. Such differences can be reflected in the
characteristics of the forcefully disassembled/decoded bytes.
Second, the difference between code and data may not
be the same between standard and non-standard formats;
however, a set of rules inspired by domain knowledge can
serve as the invariant to help the model adapt. Based on
these intuitions, Loadstar is designed with two modules.
The first module trains an initial classifier using labeled
standard binaries. To do so, Loadstar takes raw binaries as
inputs and forcefully decodes them into instruction sequences
(via linear sweep). It trains a language model to embed
these instructions and uses the labeled standard binaries to
train the initial classifier (C0). The second module performs
domain adaptation using unlabeled non-standard binaries.
The key idea is to use the initial classifier C0 to produce
pseudo labels on the non-standard binaries and then construct
a set of domain-knowledge rules (e.g., define-use chain,
jump/branch destination) to curate the pseudo labels. By
iteratively training a new classifier (e.g., Cn) and performing
pseudo-label correction, we gradually improve the classifier’s
performance on non-standard binaries.
Evaluation. Our evaluation is focused on non-standard
Programmable Logic Controller (PLC) binaries under the
ARM instruction set architecture. The rationale is that we
need ground-truth labels for our evaluation (not training), and
PLC binaries can be labeled with reasonable efforts, thanks to
existing research (and reverse-engineering efforts) [17], [18].
In addition, PLC devices are widely used in industrial control
environments [2], [19] and ARM is the most utilized ISA in
the IoT/ICS space [8], [20]. Using three different datasets of
non-standard binaries (two real-world datasets, and one syn-
thetic dataset), we show that Loadstar outperforms existing
methods in terms of both detection accuracy and inference
speed. Our result confirms the effectiveness of pseudo-label
correction while highlighting that not all domain-knowledge
rules (especially statistical-based rules) are equally useful.
The results show Loadstar is not only capable of accurately
identifying data/code sections but can also capture inline data
within code sections. Loadstar can process non-standard
binaries with a throughput of 55KB/s on a CPU, which is
orders of magnitude faster than XDA [12] and a BERT-based
baseline. In addition, our transferability experiment shows
the possibility of training a “global model” of Loadstar to
handle diverse types of non-standard binaries.
Countributions. We have three key contributions.

• We propose Loadstar, a pseudo-label-based learning
model to perform data-code separation for non-standard
binaries. A key advantage is that its training does not
require labeling any non-standard binaries.

• We evaluate Loadstar using three different datasets of
non-standard PLC binaries, which shows the system’s
excellent accuracy and efficiency.

• Throughout our study, we labeled extensive ground-truth
datasets of both standard and non-standard binaries. The
ground-truth datasets and code will be made available
for sharing with the community.

2. Background and Motivation

In this section, we describe the background for the data-
code separation problem for non-standard binaries, followed
by the motivation and the scope of this paper.

2.1. Standard vs. Non-standard Binaries

Standard Binaries. This type of binaries is compiled
for typical operating systems such as Linux, Windows, and
macOS, and follows known (standard) file formats such as
ELF, PE, and Mach-O. Under each of these file formats, there
is a clear description of sections, their functionality, and the
type of data they store. Additionally, these files are usually
equipped with headers that describe the exact locations of
each of these sections. These files can be easily parsed by
commercial binary analysis tools such as Ghidra [5], IDA
Pro [6], and Radare2 [7]. Each of these commercial tools
has a limited number of natively supported/recognized file
formats (see the full list in Table 11 in Appendix A).
Non-Standard Binaries. These binaries (or binary blobs)
usually do not have descriptive headers and cannot be parsed
by existing binary analysis tools. Non-standard binaries are
commonly seen in real-world IoT devices and industrial
control systems. Various vendors create their own customized
file formats in order to keep their software proprietary [8], [9].
Without considerable reverse-engineering efforts, commercial
tools cannot parse/support these binaries.

2.2. Data-Code Separation Problem

When loading a binary file of a non-standard format,
existing tools often fail to recognize or parse the file correctly.
Figure 1 shows how Ghidra [5] and Radare2 [7] load a non-
standard binary file, which represents two common ways in
which existing tools handle such binaries. Ghidra loads it as a
raw binary, which means that metadata such as sections (e.g.
.text, .data) are not demarcated, and accurate disassembly
is not feasible due to the lack of differentiation between
code and data sections. Radare2 performs a linear sweep
disassembly where it assumes all bytes are code. In both
scenarios, the outputs do not separate data from code to
support downstream analysis.

To address this problem, prior works have performed
reverse engineering on certain customized/non-standard bi-
nary formats and then either built new tools [18] or modified
existing tools [20], [21] to parse related files. Key challenges
to the scalability of these approaches are due to (1) the
extensive manual efforts and expertise required for reverse
engineering, (2) the diversity/heterogeneity of IoT vendors
(and their customized formats) existing on the market [8],

0x00000ec8 6c319fe5
0x00000ecc 032082e0
0x00000ed0 6430a0e3
0x00000ed4 920302e0
0x00000ed8 021081e0

0x00000ec8 6c ??
0x00000ec9 31 ??
0x00000eca 9f ??
0x00000ecb e5 ??
...
0x00000edb e0 ??

0x00000ec8 6c319fe5 ldr r3, [0x0000103c]
0x00000ecc 032082e0 add r2, r2, r3
0x00000ed0 6430a0e3 mov r3, 0x64
0x00000ed4 920302e0 mul r2, r2, r3
0x00000ed8 021081e0 add r1, r1, r2

0x00001038 80 ??
0x00001039 35 ??
0x0000103a 00 ??
0x0000103b 00 ??
...
0x0000104b 00 ??

0x00001038 80350000 andeq r3, r0, r0, lsl 11
0x0000103c ffffffff invalid
0x00001040 1c280100 andeq r2, r1, ip, lsl r8
0x00001044 b9330000 strheq r3, [r0], -sb
0x00001048 efcc0000 andeq ip, r0, pc, ror 25

Data

Code

0x00001038 80350000
0x0000103c ffffffff
0x00001040 1c280100
0x00001044 b9330000
0x00001048 efcc0000

(a) Non-Standard Binary (b) Ghidra Ouput (c) Radare2 Output

Figure 1: Outputs of Ghidra and Radare2 when a non-standard binary is used as the input. We use red and blue to indicate
the ground-truth code and data. Ghidra does not load the non-standard binary correctly, and Radare2 treats everything as
code to perform linear sweep. Neither can separate data from code.

and (3) the fact that new binary formats are continuing to
be introduced by platform and compiler updates [17].

Goals. To this end, we investigate the problem of data-
code separation for non-standard binaries, which is the first
step for most of the binary analysis tasks [22]. The expected
inputs are raw binaries of a non-standard format, and the
expected outputs are labels on the bytes as either “code” or
“data” (see example outputs in Figure 3(e)).

Inline Data. As part of our goal, we not only aim
to discover the major data/code sections but also seek
to discover “inline data” (i.e., data bytes mixed in with
code instructions in the code sections). Such inline data is
often used for jump tables and local constants. Identifying
inline data is critical to downstream tasks such as accurate
disassembly: if such inline data is mistakenly interpreted as
code, disassembly may desynchronize the instruction stream
or produce incorrect control flow graphs [11]. Figure 3(a)
shows an example of a non-standard binary file. While there
is a major data section at the end of the file (the large black
region at the bottom), there exist smaller inline data regions
in different parts of the file, mixed with the code instructions.

Assumptions. At the high level, we propose to address
the problem by training and adapting a machine learning
classifier. To ensure practicality, the system has two main
assumptions. First, the system does not require any labeled
non-standard binaries. This means analysts do not need
to perform reverse-engineering on any of the target non-
standard binaries to train our system. Second, the system
assumes the availability of labeled standard binaries. Such
data is abundant in practice because the format of standard
binaries is known. We can easily construct a large dataset
of “labeled standard binaries” by running them through an
existing tool (e.g., Ghidra). Note that, for standard binaries,
we only require labels on the data/code sections (coarse-
grained) but not necessarily labels on inline data. This is
considering that existing standard binary tools (e.g., Ghidra)
may not be capable of labeling inline data.

Method Loadable Analyzable
DeepDi [10] ✗ ✗
D-ARM [11] ✗ ✗

XDA [12] ✓ ✓
Ghidra [5] ✓ ✗

IDA Pro [6] ✓ ✗
Radare2 [7] ✓ ✓

TABLE 1: Summary of applicability of existing methods to
process non-standard binaries. “Loadable” means the method
is able to load/take the raw binaries as input. “Analyzable”
means the method can perform some analysis on raw binaries
(no guarantee of the correctness of the results).

2.3. Applying Prior Work to Non-standard Binaries

Besides commercial tools such as Ghidra and IDA Pro,
there have been solutions from the research community that
tackle the problem of accurate disassembly. In the following,
we discuss the possibility of adapting them to solve the
data-code separation problem for non-standard binaries.
We identify the three most relevant systems: XDA [12],
DeepDi [10], and D-ARM [11], all of which are focused
on disassembly for standard binaries. We summarize the
applicability of tools on non-standard binaries (and other
commercial tools) in Table 1.

DeepDi. DeepDi [10] uses superset disassembly to find all
possible bytes an instruction can start from and then discard
unlikely starting points. It first constructs an “Instruction
Flow Graph” to capture different instruction relations. Then a
Relational Graph Convolutional Network is used to propagate
instruction embeddings for instruction classification. The tool
is designed for standard binaries: (1) it uses assertions to
check whether the files belong to two standard types (ELF
and PE). (2) It relies on tools for standard binaries for
pre-processing (pefile and elftools). These tools iterate
through different sections to identify the code sections (by
checking whether the execute flag is enabled) and then pass
them to the disassembly function. We attempted to feed
non-standard binaries to DeepDi (including its web tool for
ARM binaries), but it failed to process the inputs (i.e., the
assertion failed and then the program ended).

D-ARM. D-ARM [11] is a static analysis tool to interpret
superset instructions. The information is then used to derive
a weight value for each instruction to decide whether it
is an ARM instruction (code), data bytes, or a Thumb
instruction. The original implementation only works for ELF
binaries (standard binaries). First, readelf is used to find
the instruction length and get section information. Next,
it uses flags to label code and data sections (and leverages
offsets, start, and end addresses of sections). After the .text
section and the symbol table are identified, further analysis
is done on these sections only. This method cannot be easily
adapted for non-standard binaries due to the lack of section
information (or tools like readelf). When we attempted to
feed non-standard binaries, the tool returned an error message
indicating “unsupported file format.”
XDA. XDA [12] is a transfer-learning-based disassembly
framework. It takes raw binaries as the input, trains an
embedding model with Masked Language Modeling to
capture the interactions among byte sequences, and then
fine-tunes the model for downstream tasks such as boundary
discovery for functions and instructions. While XDA is
designed with standard binaries in mind, it can be adapted to
process non-standard binaries. When running XDA on non-
standard binaries, we were able to pass the whole binary file
to it without triggering an error message. Although data-code
separation is a different problem from recovering instruction
boundaries, we suspect their results may overlap. Intuitively,
XDA, trained to detect instruction boundaries, should be able
to detect data bytes as “not within an instruction.”

This led us to adapt XDA for the data-code separation
task (see details in Appendix B). The basic idea is to pre-train
XDA for ARM binaries (given our non-standard binaries
datasets contain ARM binaries). Then we fine-tune XDA
for the instruction boundary discovery task using standard
binaries (given this process requires labels). Finally, we test
the fine-tuned model on non-standard binaries. The results
are reported in Section 5 (Table 5). We show that XDA can
distinguish code sections from data sections with moderate
accuracy (F1=0.825) but is not highly accurate. Also, it
cannot accurately capture the smaller inline data with an
F1* of 0.1951. An example of XDA’s output is visualized
in Figure 3(b) which is visibly different from the “ground
truth” in Figure 3(a). The result suggests that a new method
is needed to solve this problem.

2.4. Scope of This Paper

While the ultimate goal is to automate the analysis
of non-standard binaries, as the inaugural step, this paper
focuses on non-standard binaries for Programmable Logic
Controllers (PLC) under the ARM instruction set architecture.
The rationale is the following. First, the evaluation of our
method requires “ground truth” labels on the non-standard
binaries (even though the training does not require such
labels). As stated before, non-standard binaries often have

1. F1* is a metric to capture the accuracy of inline data detection. See
its definition in Section 5.1.

vendor-specific customized file formats with limited to
no description. Reverse-engineering those binaries requires
significant manual efforts [23]. As such, we focus on PLC
binaries that have been manually analyzed by researchers
and practitioners, making it feasible to label them for our
evaluation. Second, we choose PLC binaries for their popu-
larity and impact [24]. PLCs are widely used by Industrial
Control Systems for nuclear power plants, chemical plants,
critical manufacturing, and transportation systems [19]. While
PLC binaries contain a header, the header does not include
information about the section offset addresses or classes to
separate data from code. Third, we focus on ARM binaries
because it is the most utilized instruction set architecture
(ISA) in the IoT/ICS firmware/binary space [8], [20]. ARM
is a Reduced Instruction Set Computer (RISC) ISA with
fixed-length instructions. We will discuss how our method
can potentially be extended to other ISAs in Section 6.

3. High-level System Design

We design a system to perform data-code separation for
non-standard binaries. We call the system “Loadstar”2. In
the following, we describe our design goals and important
intuitions behind the design choices and then present a walk-
through of the system workflow.

3.1. Design Goals

We design Loadstar with four high-level goals in mind.
First, no label requirement for non-standard binaries.

The system uses unlabeled non-standard binaries, and there
is no requirement for (manually) reverse-engineering them.

Second, minimal pre-processing needed. To minimize the
dependency on other pre-processing tools (see reasoning in
Section 2.3), we design the system to directly take a binary
file/blob as the input.

Third, high accuracy. We expect the system to classify
data from code with high accuracy to support downstream
analyses. This includes accurately classifying inline data too.

Fourth, reasonable efficiency. The system should be able
to produce data/code labels for the binary files efficiently, to
minimize the waiting time of analysts. For example, a binary
file should be processed and analyzed within seconds.

3.2. Overview of Loadstar

The training process of Loadstar is illustrated in Fig-
ure 2. It contains two phases: (1) initialization (training an
initial classifier using labeled standard binaries only), and
(2) iterative training (adapting the classifier for non-standard
binaries using unlabeled non-standard binaries).
Intuitions Behind the Designs. At a high level, binary
executables have language-like structures and semantics,
especially after they are dissembled. However, they are also
different from natural languages and carry patterns introduced

2. A wordplay between “Lodestar” and “Binary Loader”

1

Embedding Model E Initial Classifier C0

Pseudo
Label (PLNS)

Corrected Pseudo
Label (PLNS) Classifier C1

Standard Binaries (S) Label (LS) Non-Standard Binaries (NS)

Pre-train
Embedding

Training

2 3 4

Predicting

Domain Knowledge

Correction

5

Re-train

Phase 1: Initialization Phase 2: Iterative Training

Figure 2: Overview of Loadstar.

by specific compilers and binary formats. On one hand, we
take advantage of language models to provide the initial
embedding for binary instructions. On the other hand, we
leverage domain knowledge of binary executables to guide
the learning process and perform domain adaption. The high-
level intuitions of Loadstar are two-fold: First, while the
code sections follow the language-specific patterns/semantics,
the data sections do not. Such differences can be reflected in
the characteristics of forcefully decoded instructions. Second,
the difference between code and data may not be the same
between standard and non-standard binary formats; but a set
of domain knowledge could serve as the “invariant” (that does
not change across binary formats). Such domain knowledge
can help to adapt a classifier trained for standard binaries to
work on a non-standard binary format.

Inputs and Outputs. As shown in Figure 2, Loadstar
is trained on labeled standard binaries and unlabeled non-
standard binaries. The set of standard binaries is denoted by
S and its label is denoted by LS. The set of non-standard
binaries is denoted by NS and this dataset does not contain
ground-truth labels for training. ARM binaries have fixed-
length instructions: by performing linear sweep [25], the
binary file will be converted to a sequence of “decoded”
instructions. The goal of the classifier is to produce labels on
each instruction as either “code” or “data”. As an example,
Figure 3(e) shows the output from our system to separate
code and data.

Phase 1: Initialization. As shown in Figure 2, Phase 1
trains an initial classifier C0 using labeled standard binaries.
In step ❶, we first use standard binaries to pre-train an
embedding model (E) for the instructions. This pre-trained
embedding model will be also used to embed non-standard
binaries later. Note that training the embedding model does
not require any labels on code and data (all instructions
will be used). After that, we train an initial classifier C0
(supervised learning) using the available labels on standard
binaries (❷).

Phase 2: Iterative Training. Phase 2 adapts the initial
classifier C0 for non-standard binaries, using an unlabeled

non-standard binary dataset (NS). First, in step ❸, we use
classifier C0 to perform prediction on the non-standard
binaries and produce an initial set of pseudo labels (PSNS).
Since the classifier is trained on standard binaries, we don’t
expect the pseudo labels to be highly accurate. As such,
we leverage a series of domain-knowledge rules to make
corrections to the pseudo labels (❹). This set of domain
knowledge can include a wide range of heuristics or rules to
describe expected behaviors of code sections or unexpected
behaviors of code sections to curate the initial pseudo labels.
Finally, in step ❺, we take the non-standard binary dataset
(NS) and the curated pseudo labels (PSNS) to perform a
retraining to produce an adaptive classifier C1. Note that,
steps ❸–❺ can be done iteratively to improve the classifier
(e.g., in round 2, the new C1 will be used to produce
the pseudo labels, which are then sent to perform label
corrections). The process can stop if minimal changes to the
pseudo labels are made by the domain-knowledge rules.

4. System Design Details

Figure 2 presents a general framework, and there are
different options for implementing Loadstar. For example,
there are different ways to perform instruction embedding
and construct the classification model, and there are different
domain-knowledge rules to use for pseudo-label correction.
In this paper, we have explored alternative designs. For
instance, our primary design uses an embedding model
specifically trained for (standard) binaries and uses an LSTM
model [26] to build the classifier (to balance accuracy and
efficiency). As an alternative direction, we have explored
using a large BERT model [27] to perform both tasks. In
the following, we describe our main design and provide
our reasoning behind the design choices. The alternative
BERT design (less efficient) is detailed in the supplementary
materials [28].

4.1. Embedding Model

For step ❶ in Figure 2, we need to train an embedding
model E to map an instruction into a vector, before perform-

ing classification tasks. One possible direction is to treat
binary code as a form of “natural language” and use large
language models to perform instruction embedding. For ex-
ample, numerous language models [29]–[31] perform “word”
embedding to capture the contextual/semantic meaning of the
word. The idea is that words with similar meanings/contexts
will be closer to each other in the latent vector space.
However, the drawback is these natural language models
do not consider the unique characteristics and semantic
structures of binary code [32] and often are less efficient
due to their large model size [33].

With these considerations, we train/adapt a lightweight
embedding model Palmtree [33] designed for standard bina-
ries. This model considers both inter-instructional and intra-
instructional relationships. First, it treats each instruction as a
“sentence”, fragments each instruction into basic tokens (e.g.,
space separated), and then performs embedding for the tokens.
It also customizes the original self-supervision tasks within
large language models for binary analysis tasks, to improve
the embedding quality. More specifically, (1) the original
Masked Language Model (MLM) is adapted to predict the
“masked” tokens within an instruction. (2) The Next Sentence
Prediction (NSP) is adapted into Context Window Prediction
(CWP) which predicts the occurrence of 2 instructions within
a window in the control flow of the binary. (3) It introduces
a new Def-Use Prediction (DUP) task to predict whether
two instructions have a define-use relationship. These self-
supervision tasks are designed to improve the embedding of
tokens and individual instructions (e.g., by learning context
relationships with other instructions). A better embedding
usually leads to better downstream classifiers.

The original Palmtree model is trained on x86 binaries
(and their code sections). For our purpose, we instead train
a new embedding model for ARM binaries using standard
binaries only. Note that the training of the embedding model
E does not require any labels. In addition, we do not use non-
standard binaries for training E because the model training
requires identifying control flow graphs (CFG) and define-use
relationships, which are infeasible for non-standard binaries.

4.2. Classification Model

For step ❷ in Figure 2, we take the embedding vectors
to train a classifier C0, using labeled standard binaries data.
We use a sequential model for this classification task to
capture the sequential dependency of tokens in an instruction.
We use a Long Short Term Memory (LSTM) network [26]
which is a type of Recurrent Neural Network (RNN). LSTM
overcomes the challenges of gradient vanishing and exploding
in traditional RNNs that impede their ability to learn from
long sequences. Binary analysis usually deals with long input
sequences, which makes LSTM suitable for this task.

We take the raw binaries as inputs and first perform
linear sweep disassembly on the binaries using Radare2 [7].
Radare2 treats all bytes as code and decodes them accordingly
(i.e., data sections are also decoded as instructions). Intu-
itively, the disassembled code instructions will carry mean-
ingful semantic structures while the forcefully decoded data

sections will likely produce uncommon/incorrect instructions
(e.g., uqsub16vs r2, pc, r2). The decoded instructions
are first sent to the embedding model E to generate the
embeddings for their tokens, which are then formulated into
a sequence. Note that we did not use any data/control flow
graph for formulating the feature vector because this classifier
will be eventually used to classify non-standard binaries
where such data/control flow graphs cannot be generated
with existing tools. In addition, data sections are forcefully
decoded into instructions, and generating a dependency graph
for data is not meaningful.

Our LSTM contains (1) an Embedding layer initialized
to our adapted Palmtree embedding, (2) an LSTM layer
used to learn from the sequential dependency of inputs,
(3) a Dropout layer for regularization to reduce overfitting,
and (4) a Dense layer with Sigmoid activation to produce
the prediction probability (between 0 and 1). For training,
the input is split into batches of size 128. Training loss is
computed using cross-entropy, and the weights are updated
using the RMSprop optimizer. The learning rate is set to be
1×10−3. We implement the LSTM using Keras [34] with
TensorFlow 2.13 [35].

4.3. Pseudo-Label Generation and Correction

To adapt classifier C0 (trained on standard binaries) to
classify non-standard binaries, the key idea is to generate
pseudo labels and curate the labels using domain knowledge.
As shown in Figure 2, we first apply C0 to non-standard
binaries to provide the initial pseudo labels (PSNS), and
then apply heuristics and rules to make corrections on these
labels (steps ❸–❹). In the following, we provide a detailed
explanation of the domain knowledge rules we considered.

There are two high-level considerations behind the rule
designs. First, we focus on rules that describe the behav-
ior/patterns of code instead of those that describe the data.
The reason is that code is expected to carry meaningful
semantics and structures while the data does not have such
constraints. Second, for code-related rules, we consider rules
that describe expected behaviors of code as well as those that
describe uncommon behaviors of code. However, we don’t
expect all the rules to be equally effective. For example, rules
that are based on statistical properties (e.g., Rules 5, 6, 7)
should be weaker than those based on logical assertions (e.g.,
Rules 1, 2, 3, 4). This will be validated later in Section 5.2.

Below, we describe the high-level intuitions behind these
rules. Additional implementation details of the rules can be
found in Table 12 in the Appendix.
(1) Short Code/Data Section.3 This rule (referred to as
Short Sec) is designed based on the intuition that most com-
pilers usually do not produce extremely short code or data
sections4. To apply this rule, we scan the predicted pseudo

3. “Code (Data) Section” here refers to the longest uninterrupted sequence
of consecutive code (data) bytes based on the prediction results.

4. Extremely short inline data sections are indeed possible, but they are
corner cases/uncommon (see Table 3). We set the threshold conservatively
(i.e., 3 instructions and less).

labels, identify extremely short sequences of code/data bytes
(i.e., 3 instructions or less), and flip their pseudo labels. We
perform a round of correction for short data sequences first
(and then code) because empirically C0 produces a higher
number of short data sequences or spikes.
(2) Branch Destination. This rule (referred to as Br Dest)
is based on the expected behavior of code, i.e., the branch
(jump) destination of a true code instruction should not land
on an invalid address. Here, an invalid address means it
does not align with the instruction boundaries. This leads
to two sub-rules. First, if a branch instruction’s destination
lands on an invalid address, this branch instruction should
be labeled as “data.” Second, if a branch instruction jumps
to a valid address, then this instruction should be labeled as
“code.” These heuristics are easier to apply to fixed-length
instructions such as ARM.
(3) Compare-Branch. This rule (referred to as Cmp-
Br) describes the expected order of “compare” and “branch”
instructions. In the code section, conditional branches (i.e.,
branches that happen based on the result of a condition)
should be preceded by a compare instruction. Intuitively, this
pattern is less likely to happen in data sections by chance.
For conditional branch instructions that follow this pattern,
we correct their label as “code.” For conditional branches
that violate this rule, we change their label to “data.”
(4) Define-Use. This rule (referred to as Def-Use) describes
the expected order between the instruction that defines a
variable and the instruction that uses the variable. In other
words, the “use” of a variable should be preceded by its
“definition”. Here, we specifically focus on the sequence of
mov/ldr instructions followed by str instructions. This is a
common scenario where a value is loaded/moved to a specific
register, changed/operated on, and then stored in another
location to be used later. This define-use chain happens
often during important stages such as stack preparation for
loading new functions. For this rule, we consider direct
succession between mov/ldr and str, and succession within
a window of 16 instructions. Additionally, we consider
different variations of these instructions (i.e., conditional
mov/ldr and str). Note that this rule is only used to identify
“code”, i.e., instructions within a correct define-use chain
will be labeled as “code.” We did not perform the inverse
check for this rule, because it’s valid to have a standalone
mov (or ldr) that is not followed by a str instruction in the
code section.
(5) Repeated Addresses. This rule (referred to as Rep-
Addrs) is based on prior research [36] that suggests that
exact addresses occurring many times in a binary are likely
to point to shared resources (e.g. library functions). As
such, instructions that contain the repeated exact addresses
are more likely to be “code”. We define a rule to first
capture repeated addresses (i.e., addresses that appear at
least 2 times in the file) and then find the corresponding
instructions to correct their pseudo label as “code.” In later
experiments, we find this rule can lead to major errors on
pseudo labels because data sections also have repeated values
(see Section 5.2).

Data # Files # Total
Instructions

% of
Code Compiler

S 444 20,131,565 18.6% GCC
NS 1 65 3,707,125 78.5% Codesys 2.3
NS 2 201 12,425,750 94.2% Codesys 2.3
NS 3 119 4,271,587 77.8% Codesys 3.5

TABLE 2: Summary of datasets.

(6) Instruction Suffixes. This rule (referred to as Inst-
Suffix) is based on the rare occurrence of complex suffixes
in code sections. ARM instruction may use different suffixes
to perform operations with specific conditions but this is
expected to be rare. Some suffixes are conditional (e.g.,
moveq limits the mov only if the equal flag is set), and others
are concerned with the size of the operands (e.g., strb
stores the least significant byte). This rule is to correct the
corresponding instruction’s label to “data” given the rareness
of complex suffixes. Our later analysis also finds this rule
introduces more errors than corrections.
(7) Operand Type. This rule (referred to as Operand)
is based on uncommon behavior of code. More specifically,
special-purpose registers are not commonly used in code.
Examples of special-purpose registers include co-processor
registers used with co-processor instructions and floating-
point registers used to hold floating-point operands for scalar
floating-point instructions. Other operand variations consider
the use of shift operations and write-back marks within the
operand. Our later analyses also find this rule less effective.

4.4. Re-Training

As shown in step ❺, with the corrected pseudo labels
(PSNS) on non-standard binaries, we perform another round
of re-training on the classifier to produce an adapted classifier
C1. This model follows the same architecture as the initial
model C0, but is specially tuned for classifying code from
data in non-standard binaries.

5. Evaluation

In this section, we seek to evaluate Loadstar to answer
the following research questions:
RQ1: Which domain-knowledge-based rules help to curate

pseudo-labels? (Design Choices)
RQ2: How accurate is Loadstar for data-code separation

for non-standard binaries? (Effectiveness)
RQ3: How computationally efficient is Loadstar in com-

parison with LLM-based alternatives? (Efficiency)
RQ4: How well can Loadstar generalize to a new

dataset/binary format? (Transferability)

5.1. Datasets and Experimental Setup

Data. To the best of our efforts, we collected and labeled
three datasets of non-standard binaries and one dataset of
standard binaries. The datasets are summarized in Table 2.

1) S: This is a dataset of standard binaries, drawn from the
Clemens [37] dataset. The Clemens dataset is obtained
from various software packages (e.g., coreutils) with
binaries compiled with different optimization levels
(O0–O3). These files are compiled for typical operating
systems such as Linux, Windows, and MacOS, following
known file formats such as ELF, PE, and Mach-O. For
our evaluation, we identify 32-bit ARM ELF binaries
from this dataset (444 files and 20 million instructions).

2) NS 1: This is our main dataset for non-standard binaries,
drawn from the PLCSEC dataset [17]. This dataset
includes real-world PLC binaries collected by connect-
ing to Wago-750 PLCs and downloading the control
applications/programs. The dataset includes 65 PLC
binaries with a total of 3.7 million instructions. These
files are in a non-standard format (complied by Codesys
2.3). We chose this dataset because the researchers have
spent significant manual efforts on reverse-engineering
this file format [18], making it possible for us to label
the ground truth.

3) NS 2: To evaluate the transferability of our method, we
construct an additional dataset of non-standard binaries.
This set is drawn from the dataset published by [18]. The
authors of the dataset constructed specific search queries
using the GitHub advanced search options to locate
target public binaries in GitHub repositories (e.g., .pro
for Codesys 2.3) compiled from different languages,
vendors, and architectures. For our evaluation, we use
201 ARM PLC executables (12.4 million instructions).

4) NS 3: To diversify the evaluation datasets, we have
NS 3, which is a synthetic dataset generated by re-
searchers [17]. This dataset is constructed systematically
by compiling simple PLC programs composed of basic
operations. These programs cover 8 categories of opera-
tions: arithmetic, logic, selection, bit shift, comparison,
numeric, type conversion, and function calls. Each
program contains variable initialization and one instance
of the basic operation. The programs are compiled with
CodeSys 3.5 (a different compiler from NS 1 and NS 2)
for ARM. This dataset includes 119 files (4.2 million
instructions).

Binary Annotation and Labeling. First, for standard
binaries (S), we can annotate the code and data sections
following their standard/known format using Ghidra [5].
We automate the process by loading the binary files using
Ghidra’s Headless Analyzer, and annotating the code/data
sections based on Ghidra’s output information of sections,
addresses, and permissions.5 Note that, for standard binaries,
we only perform section-level labeling and do not label
“inline data” (i.e., data within the code sections). There
are two considerations. The first reason is for the ease of
labeling (i.e., inline data often requires manual annotation).
The second reason is to test Loadstar’s ability to learn from

5. We discern the size of each section and the associated bytes based on
the section addresses and the length information. Additionally, using the
permission information, we can label the type of the sections (e.g., code
sections are not writable and data sections are not executable).

noisy labels (i.e., inline data labeled as “code”). Recall that
the standard binaries will only be used for embedding and
the training of the initial classifier. This dataset helps to test
how well Loadstar can be trained with standard binaries of
coarse-grained (noisy) labels.

Second, for non-standard binaries, we cannot use con-
ventional tools such as Ghidra or IDA Pro for labeling since
they do not follow standard formats. Instead, we first rely
on a prior work’s method [18] to reverse engineer the PLC
binaries and identify each section (i.e., function block) and
the preceding data section. This allows us to assign coarse-
grained labels. In the second stage, we perform manual
analyses to identify any missing sections or inline data. The
inline data is often introduced for efficient access (e.g., jump
tables within the main program), and examples are provided
in Appendix C (Figure 7). We label inline data based on
heuristics identified after extensive manual analysis of these
files. For example, one of such heuristics is to look for
a sequence of an unconditional branch instruction (i.e., to
introduce a block of data bytes without interfering with
the logic of the code), semantic NOP instruction (usually
“mov r0, r0”), followed by 0xCDCDCDCD (a pattern used
to indicate memory initialization [38]). This sequence is
followed by bytes within address ranges that are loaded from
other instructions within the binary/section. In Appendix C,
we provide examples and extra explanations for these labeling
strategies. While these heuristics may not cover all inline data,
they cover all the inline data we could manually discover
without creating any false matches. We label the inline
data for non-standard binaries because they will serve as
our testing data, and thus accurate labels are important to
assessing the system’s prediction performance.

Training and Testing Data. For each dataset, we randomly
split it into a training set and a testing set with a 70:30 ratio,
at the file level. In other words, 30% of the files are held
out for testing. In addition, as stated in Section 2.2, we only
use labeled standard binaries (S) and unlabeled non-standard
binaries (NS 1, NS 2, NS 3) for training (i.e., only their
training sets). We do not use any ground-truth labels from
the non-standard binaries during the training time.

Evaluation Metrics. As shown in Table 2, all the datasets
have an imbalanced ratio of “code” and “data” labels. As
such, metrics such as accuracy can be misleading (e.g., for
NS 2, if a system predicts everything as “code”, it still
obtains an accuracy of 94.2%). Instead, we report Precision
(P), Recall (R), and the F1 score (the harmonic mean of
precision and recall), for “code” and “data”, respectively.

In addition, we are interested in assessing the system
performance on inline data. As shown in Figure 3(a), non-
standard PLC binaries have a large data section at the end
of the file, which can dominate the prediction results. For
instance, a predictor that performs poorly on inline data can
still appear accurate as long as it predicts this large data
section well. To assess the prediction performance on inline
data detection, we introduce F1*, which is the F1 score
computed on the remaining part of the file after excluding
the large data section at the end.

Against Ground-Truth Correcting Pseudo Labels Data Code
DK Rules Total # of

Occurrence
of Correct

Occurrences (%) Triggers Corrections Errors F1 ∆F1 F1* ∆F1* F1 ∆F1 F1* ∆F1*

Short Sec NA NA 237,470 232,153 5,317 0.991 0.105 0.955 0.355 0.997 0.041 0.997 0.041
Br Dest 152,246 131,219 (86%) 67,400 46,608 20,792 0.895 0.009 0.649 0.049 0.961 0.005 0.965 0.009
Cmp-br 87,105 86,339 (99%) 40,386 39,652 734 0.903 0.017 0.643 0.043 0.963 0.007 0.964 0.008
Def-Use 482,349 481,881 (99%) 303,978 301,151 2,827 0.931 0.045 0.697 0.097 0.973 0.017 0.973 0.017
Rep-Addrs 715,611 511,233 (71%) 275,906 71,911 203,995 0.795 -0.091 0.648 0.048 0.935 -0.021 0.967 0.011
Inst-Suffix 1,285,993 731,177 (56%) 353,428 850 352,578 0.758 -0.128 0.376 -0.224 0.882 -0.074 0.882 -0.074
Operand 638,074 418,939 (65%) 219,271 445 218,826 0.802 -0.084 0.438 -0.162 0.961 -0.044 0.911 -0.045

TABLE 3: The effectiveness of different domain-knowledge rules on correcting pseudo labels. Before applying the rules, the
initial classifier’s pseudo labels have a baseline F1=0.886 (F1*=0.600) for data, and F1=0.956 (F1*=0.956) for code.

Baselines. As we focus on non-standard binaries, we do
not have many existing tools to compare with. First, we can
not use commercial tools such as IDA Pro and Ghidra as
baselines because they cannot process non-standard binaries
(see Section 2). Second, most state-of-the-art research tools
utilize metadata (e.g., headers) to parse standard binaries as
explained in Section 2.3. To this end, we compare our work
with tools that take raw binary as inputs, namely XDA [12].
XDA does not perform code and data separation therefore
we adapt their instruction boundary detection task for our
purpose. The released code of XDA does not include a pre-
trained model for ARM and thus we use their code to train
an ARM model (see Section 2.3 and Appendix B for details).
Finally, we include a BERT implementation of our proposed
framework (details in the supplementary materials [28]).

5.2. RQ1: Domain Knowledge (Design Choices)

We start with RQ1 by exploring the usefulness of
different domain-knowledge rules for curating pseudo-labels.
This analysis uses all the non-standard binary files in NS 1.
Most of the rules described in Section 4.3 can be formulated
as “if condition C, then action A” where condition C describes
a pattern in the binary file, and action A either changes the
label from “code” to “data” or vice versa. Given a rule,
we measure how often its condition C appears in the non-
standard binaries, how often its action A leads to a correct
label, and the rule’s overall impact on the label accuracy.

The results are shown in Table 3. We use “Branch
Destination” (Br Dest) as an example, to explain the numbers
in the table. This rule says “if a branch (jump) destination
lands on a valid address, then this branch instruction should
be labeled as code”; also, “if a branch destination lands
in an invalid address, then this branch instruction should
be labeled as data”. First, we directly measure the total
occurrences of the rule condition (i.e., jump/branch) among
all the instructions (out of 3.7 million in NS 1). We find that
the condition has occurred 152,246 times. Among 131,219
of them (86%), this rule leads to correct labels. This means
in 14% of these cases, data bytes were decoded as a branch
instruction that happened to have a valid destination address.

Recall that in our design (Figure 2), we use the initial
classifier (C0, trained on standard binaries) to generate the
pseudo labels for non-standard binaries before applying rules
to make corrections. In Table 3, we show the number of
actual triggers of the rule (i.e., if a predicted label is already

DK Rules Data Code
F1 ∆F1 F1* ∆F1* F1 ∆F1 F1* ∆F1*

Combo 0.991 0.105 0.966 0.366 0.997 0.041 0.998 0.042
Combo w/o
Short Sec 0.934 0.048 0.737 0.137 0.976 0.020 0.977 0.021

TABLE 4: Applying a combination of four domain-
knowledge rules (Short Sec, Br Dest, Cmp-Br, Def-Use), in
comparison with applying the combination without “Short
Sec”. Before applying any rules, the initial classifier’s pseudo
labels have a baseline F1=0.886 (F1*=0.600) for data, and
F1=0.956 (F1*=0.956) for code.

consistent with the “Br Dest” rule, then this rule does not
need to trigger a label correction). For “Br Dest”, we find
that there are fewer triggers (67,400) compared with the
total number of condition occurrences (152,246) because the
initial classifier C0 already predicts these labels correctly.
Among the triggered ones, 46,608 leads to correct pseudo
labels while 20,792 leads to errors. The overall impact is
still positive, leading to an increase in F1 score (data) from
0.886 to 0.895. More importantly, for inline data (F1*), the
increase is more obvious, from 0.600 to 0.649.

Individual Domain-knowledge Rules. Comparing differ-
ent rules in Table 3, we have four key observations. First,
the “Short Code/Data Section” rule is the most effective
one to correct pseudo labels. The reason is illustrated in
Figure 3(d). The initial classifier trained on standard binaries
predicts many short data/code sections. Using the heuristics
that most compilers do not produce extremely short sections,
we remove these “spikes” in the predicted labels and thus
improve the pseudo-label accuracy.

Second, comparing the remaining rules, we find that rules
based on logical assertion of code behaviors (e.g., Branch
Destination, Compare-Branch, and Define-Use) perform well
and positively influence pseudo-label accuracy. In contrast,
rules based on statistical properties, especially those that
describe statistically “uncommon” code behaviors (e.g., In-
struction Suffixes, and Operand Type), often produce false
labels. This implies that, although certain behaviors are rare
for code (e.g., using suffixes), they are not necessarily strong
indicators for data either.

Third, the “Repeated Addresses” rule hurts F1 but slightly
improves F1* (inline data detection). The rule hypothesizes
that repeated addresses are more likely to appear in code
sections. However, the mixed result indicates that such
“repeated” addresses can also (commonly) appear in the

(a) Ground-truth (b) XDA (c) BERT (d) Loadstar (before it-
erative training)

(e) Loadstar (after iter-
ative training)

Figure 3: Visualization of a non-standard binary file. The white color represents “code” and the black color represents “data”.

Method Data Code
P R F1 F1* P R F1 F1*

Loadstar 0.990 0.996 0.993 0.975 0.999 0.997 0.998 0.998
BERT 0.998 0.961 0.978 0.883 0.986 0.999 0.992 0.993
XDA 0.959 0.737 0.825 0.195 0.950 0.995 0.972 0.974

TABLE 5: Effectiveness of different methods. All classifiers
are trained with the training sets of labeled S and unlabeled
NS 1. Then they are tested on the testing set of NS 1.

data sections, especially in the large data section at the end
of the file, which leads to a reduced F1. We confirm this
intuition in Appendix E.

Finally, across all the rules, we observe that the number
of triggered label corrections (the “Triggers” column) is
much lower than the number of occurrences of the condition
patterns (the “Total Occurrence” column). This indicates that
the initial classifier (trained with only standard binaries) is
already predicting many of the labels correctly.
Combined Domain-knowledge Rules. Based on these
results, we then combine the four positive domain-knowledge
rules (including “Short Code/Data Section”, “Branch Destina-
tion”, “Compare-Branch”, and “Define-Use”) and apply them
consecutively to the pseudo labels to improve the accuracy.
The results are shown in Table 4. Compared with applying
individual rules only, the combined rules reached the highest
gain in pseudo-label accuracy. As mentioned before, the
biggest contributor is the “Short Code/Data Section” rule,
without which the gain is less significant. For the rest of the
paper, we will use the combination of these four rules for
pseudo-label correction.

5.3. RQ2: Effectiveness

Next, we focus on RQ2 to investigate the effectiveness
of Loadstar and compare it with other baselines. For all
the methods, we train them with labeled training set of
standard binaries (S) and unlabeled training set of non-
standard binaries (NS 1). After the training, the models
are tested on the testing set of NS 1. Due to the space
limit, we only report the result for NS 1 for this section. We
have also trained Loadstar by using NS 2 (and NS 3) to
produce pseudo labels for retraining. The result confirms the
effectiveness of Loadstar on all these datasets (see Table 13
(row “NS 2”) and Table 14 (row “NS 3”) in the Appendix).

Setting Data Code
P R F1 F1* P R F1 F1*

Before 0.731 0.997 0.838 0.614 0.999 0.918 0.957 0.957
After 0.990 0.996 0.993 0.975 0.999 0.997 0.998 0.998

TABLE 6: The effectiveness of Loadstar before and after
pseudo-label correction and iterative training (NS 1).

Comparing with Existing Methods. The results are
presented in Table 5. For Loadstar and BERT, we only
perform one round of pseudo-label correction and retraining.
The result shows that Loadstar outperforms XDA and BERT
with a higher F1 score and a higher F1*. For example, for
data identification, Loadstar has an F1 score of 0.993,
which is higher than that of XDA (0.825) and BERT
(0.978). The advantage of Loadstar is further illustrated
for inline data detection with an F1* of 0.975, which is
much higher than that of XDA (0.195) and BERT (0.883).
XDA’s performance can be in part attributed to the fact
that it is not designed for data-code separation (its original
goal is to find instruction boundaries, which is adapted for
our purpose). The performance gap between Loadstar and
BERT is smaller (compared with the gap with XDA), but
Loadstar is much more efficient than BERT (see later in
Section 5.4).

To further visualize the performance differences of these
systems, we present a case study in Figure 3. Extra examples
are included in the Appendix (see Figure 6). Comparing
Figure 3(d) and (e), we show the impact of iterative training
(i.e., the use of domain knowledge to curate pseudo-labels).
Compared with Loadstar, XDA and BERT can also detect
most of the code sections and the large data section at the
end of the file. However, XDA fails to detect inline data
within the code regions. BERT has a good performance but
is not as accurate as Loadstar on smaller inline data regions
(e.g., BERT occasionally breaks a long data sequence into
disconnected ones).

Pseudo-label Correction and Re-Training. Next, we
systematically evaluate the impact of iterative training. In
Table 6, we take the initial classifier (trained on standard
binaries (S)) and test it on the testing set of non-standard
binaries (NS 1). Then we compare the results with the
classifier trained with one round of pseudo-label correction
and re-training (using unlabeled NS 1 training set). The
result shows that after just one round of iterative retraining,

R0 R1 R2 R3 R4
Number of Iteration Rounds

0.6
0.7
0.8
0.9
1.0

F1
 S

co
re

s
F1 Code
F1* Code
F1 Data
F1* Data

Figure 4: Impact of multiple rounds of iterative training.
Testing Training

Method Predict
(B/s)

Pretrain
(hrs)

Training
(hrs)

Pseudo-Label
Correction (s)

Re-train
(hrs)

Loadstar 55,539 380 2.4 15.6 0.4
XDA 1,797 110 94.9 - -
BERT* 80 72 1.7 15.6 1.7

TABLE 7: The efficiency of different methods. For infer-
ence/testing, we report bytes per second (B/s) on a CPU.
For training, we report the training duration with the CPU.
*BERT’s training is done entirely with the GPU (training
with the CPU suffers from extremely slow speed).

the performance (F1) is increased significantly from 0.838
to 0.993. Essentially, the pseudo-label correction helps with
domain adaption to increase the model’s performance on the
new domain (i.e., non-standard binaries).
Multiple Rounds of Iterative Training. In the above
experiment, we only perform one round of pseudo-label
correction and re-training. Here, we further explore the
benefit of running multiple rounds. As shown in Figure 4, the
major performance gain happens from R0 (initial classifier)
to R1 (first round of iterative training). After that, the
performance gain is minimal. The takeaway is that one
round of pseudo-label correction and retraining is sufficient
for our dataset. In practice, we can run multiple rounds
and stop when the number of label corrections between
two consecutive rounds is minimal (see extra results in
Appendix F).

5.4. RQ3: Efficiency

To answer RQ3, we evaluate the efficiency of Loadstar.
Our focus is on the inference efficiency at the testing time.
The main consideration is that the speed of the tool is
important to users when analyzing non-standard binaries.
Additionally, we report the model’s training overhead, which
is a one-time effort. For this evaluation, we use an 8-threaded
CPU (Intel Xeon Silver 4214 2.20GHz) and an NVIDIA
RTX 5000 GPU.
Inference Performance. The inference speed is important
as it directly affects user experience. In Table 7 (the “Testing”
column), we compare the inference speed of the different
models on our NS 1 testing set. We show that Loadstar
is the fastest among the three systems with a throughput
of 55,539 bytes per second (B/s) on a CPU. XDA has a
speed of 1,797 B/s, and BERT is the slowest one with
80 B/s (all measured on the same CPU). In Figure 5, we
further plot the cumulative distribution function (CDF) for

100 101 102 103 104

Processing Time per File (Seconds)

0.2
0.4
0.6
0.8
1.0

CD
F

of
 Fi

le
s Loadstar

XDA
Bert

Figure 5: Inference performance. Our method (Loadstar)
is orders of magnitude faster than XDA and BERT.

the processing time per binary file in the NS 1 testing set.
Loadstar can process most of the binary files within 10
seconds which is orders of magnitude faster than XDA and
BERT. The reason is that Loadstar uses the lightweight
LSTM instead of using large language models. Our LSTM
we use has 93 million parameters and XDA has 87 million
parameters; both are smaller models compared with BERT
(385 million parameters). More importantly, LSTM has
a simpler model architecture than those of BERT and
XDA (XDA is transformer-based), which leads to a higher
inference speed. This is a critical design decision: using
domain knowledge (for pseudo-label correction) combined
with a lightweight model, Loadstar can achieve similar (or
even better) accuracy while being orders magnitude faster
than large/complicated models.
Training Performance. In Table 7, we also break down
the training performance for different methods. While the
training performance is important to measure, most of these
steps occur once and do not introduce continuous overhead.
The training performance of Loadstar and XDA is reported
on the CPU while BERT is on the GPU. We use the
GPU to train BERT because training BERT on a CPU is
extremely slow (infeasible to complete within two weeks).
As a reference, we have trained our Loadstar on the GPU
too, and the pertaining step can be completed within just
3.3 hours (instead of using 380 hours on a CPU). Across
different models, the pre-training step (for the instruction
embedding) is the most time-consuming part.

A key result to highlight is that Loadstar can run
the pseudo-label correction and the re-training step quickly
(15.6 seconds and 0.4 hours, respectively). This means once
the expensive steps are completed (i.e., the pre-training
of the embedding model and the training with standard
binaries), adapting this model to a specific non-standard
binary dataset (unlabeled) will be quick with negligible
overhead. For example, if we want to apply Loadstar to
a new non-standard binary dataset (e.g., NS 3), we only
need to execute the lightweight pseudo-label correction and
iterative retraining.

5.5. RQ4: Transferability

Finally, we evaluate transferability (RQ4). The goal is
to explore feasible strategies to apply Loadstar to a new
dataset of non-standard binaries.

Test Data Code
Set P R F1 F1* P R F1 F1*

S 0.975 0.997 0.986 0.783 0.986 0.920 0.952 0.958
NS 1 0.731 0.997 0.838 0.614 0.999 0.918 0.957 0.957
NS 2 0.428 0.992 0.586 0.412 0.999 0.888 0.940 0.941
NS 3 0.837 0.987 0.906 0.857 0.995 0.932 0.963 0.964

TABLE 8: Baseline: transferring from S to other datasets.
We train the classifier using standard binaries only (S), and
then test it on standard (S) and non-standard binaries (NS 1,
NS 2, NS 3) to establish the baseline transferability.

Test Data Code
Set P R F1 F1* P R F1 F1*

S 0.982 0.997 0.990 0.774 0.989 0.927 0.957 0.962
NS 1 0.990 0.996 0.993 0.975 0.999 0.997 0.998 0.998
NS 2 0.974 0.994 0.984 0.974 0.999 0.997 0.998 0.998
NS 3 0.835 0.995 0.908 0.853 0.998 0.930 0.963 0.963

TABLE 9: Transferring from NS 1 to other datasets. We
perform iterative training with (NS 1), and then test it on
standard (S) and non-standard binaries (NS 1, NS 2, NS 3).

Baseline Performance. We start by establishing a baseline,
by training Loadstar with only standard binaries (S) and
directly testing it on different non-stand binaries. As shown
in Table 8, the classifier performs well on the test set of
standard binaries (non-transfer setting) and performs worse
on NS 1 and NS 2 (transferred setting). The exception is
NS 3 on which the classifier performs well. Recall that NS 3
is a synthetic dataset generated by researchers [17] which
contains simple PLC programs composed of basic operations.
Even though it is of a non-standard format, the binaries often
have a simple structure with minimal interleaving of code
and inline data. As such, it is closer to the format of standard
binaries, which may lead to its good performance.
Transferring between Non-standard Binaries. Next,
we further investigate the transferability between datasets
of non-standard binaries. In this setting, we train Loadstar
by running pseudo-label correction and retraining on the
NS 1 training set (unlabeled) and testing it on all other
testing sets. The results are shown in Tables 9. We find
that a classifier tuned on NS 1 transfers well to NS 2 (a
different dataset of real-world non-standard binaries). The
testing accuracy on the original standard binaries (S) also
remains high. The transferability to NS 3 is lower due to
the reasons mentioned above: NS 3 is a synthetic dataset
with different characteristics from real-world non-standard
binaries (NS 1, NS 2).

In Appendix D, we repeat the above experiment by using
the training set of NS 2 (and NS 3) for iterative training.
The overall conclusion is consistent. A classifier tuned on
a non-standard binary dataset (unlabeled) performs the best
on the same non-standard binary dataset. In practice, when
encountering a new dataset of non-standard binaries, the
best strategy is to directly tune the classifier with this target
dataset using pseudo-label correction and retraining. Note
that the adaptation process does not require labeling any of
the target binaries, and thus involves minimal human effort.
In practice, it is possible that some human effort is needed
if additional or different domain-knowledge rules are needed

Test Data Code
Set P R F1 F1* P R F1 F1*

S 0.972 0.988 0.980 0.680 0.947 0.883 0.913 0.937
NS 1 0.990 0.996 0.993 0.977 0.999 0.997 0.998 0.998
NS 2 0.972 0.978 0.975 0.960 0.998 0.998 0.998 0.998
NS 3 0.972 0.965 0.968 0.995 0.987 0.990 0.989 0.990

TABLE 10: Iteratively training a global model with a
combined training set (NS 1, NS 2, NS 3), then test it
on different testing sets. This global model performs well
on all testing sets.

for the new dataset; however, we have not encountered this
requirement during our experiment. This process is also
efficient with low computational overhead (see Section 5.4).
Training a “Global” Model. Finally, we explore a
different idea, which is to train a global model of all the
non-standard binary datasets. More specifically, we first
train the initial classifier with standard binaries (S), and
then run iterative training on the combined training sets
of non-standard binaries (NS 1, NS 2, and NS 3). Again,
all of these non-standard binaries are unlabeled. Then this
classifier is tested on different testing sets. As shown in
Table 10, this global classifier performs well on all testing
sets (including NS 3). This shows that, in practice, users
can train a global model for different types of non-standard
binaries of interest, by tuning with a diverse set of unlabeled
non-standard binaries in those target formats.

6. Discussion

Domain-knowledge Rules. An integral part of Loadstar
is the domain-knowledge rules for pseudo-label correction.
Intuitively, a classifier trained for standard binaries can make
various mistakes when directly applied to unseen formats
of non-standard binaries. The domain-knowledge rules can
act as the “guard rails” to ensure the pseudo labels are
improving through each iteration. Such rules can be derived
from the domain knowledge of devices, assembly, compilers,
and programming paradigms. In this paper, we investigate
a set of rules based on our domain knowledge and prior
works, which is by no means exhaustive. We find that rules
based on logical assertions (or golden rules, e.g., “a br should
always point to a valid destination in code”) are more reliable
than those based on statistical patterns (e.g., “suffixes are
not frequently used in code”). However, golden rules may
have a lower occurrence in the code and thus make fewer
corrections. Our work presents a general framework—future
work can explore the possibility of adding other domain-
knowledge rules to this module. Another future direction is to
explore automated ways to expand or adjust the rules based
on feedback from the data or the pseudo-label correction
process, e.g., using methods such as reinforcement learning.
The challenge is to formulate a reward function that requires
minimal to no labels from non-standard binaries.
Downstream Tasks. Data-code separation is the first
step for many downstream binary analyses. Loadstar can
be potentially integrated as a plugin to existing commercial

and research-based tools to act as a file parser/loader. By
separating code from data (including inline data), downstream
tools can generate accurate control flow graphs or data flow
graphs for non-standard binaries to support advanced analyses
such as vulnerable function detection.

Impact of the “Initial Classifier.” The initial classifier
trained on standard binaries is used to produce the preliminary
pseudo labels. A potential concern is that, if this initial
classifier was too inaccurate, pseudo-label correction may
not be sufficient to recover the true labels. In our evaluation,
we show that while this initial classifier is not highly
accurate, it provides a good starting point for pseudo-label
correction. Intuitively, standard and non-standard binaries
share key similarities that make domain transfer possible
(e.g., instruction structure, decoding rules, registers). As such,
it is reasonable to assume the initial classifier has a decent
accuracy to start with. In practice, one may use more diverse
standard binary samples to train the initial classifier to ensure
the accuracy of the preliminary pseudo labels.

Limitations and Future Work. Our work has a few
limitations. First, as stated in Section 2.4, we focus on
PLC binaries due to their popularity in the IoT/ICS domain
and also the feasibility of labeling “ground-truth” datasets.
While we attempted to diversify the data (by including
different compiler versions and using both real-world and self-
complied binaries), the generalizability to other non-standard
binary formats needs to be further explored. To broadly
study generalizability, future work needs to first overcome
the challenges of collecting and labeling new/diverse binary
formats [8], [39] (this is also our future plan).

The second direction is to explore how Loadstar can
work with other ISAs. (1) Thumb mode: RISC processors of-
fer mixed-length instructions (16 bits and 32 bits) to improve
performance [40]. The 16-bit instructions are called Thumb
instructions. ARM executable can be built as either ARM-
only (32-bit) or as a mixture of ARM/Thumb instructions
(32-bit and 16-bit). Although our datasets do not include
ARM/Thumb executables (they are not as common as ARM-
only binaries), there is a potential to apply Loadstar. Note
that Thumb instructions and ARM instructions do not overlap
and are located in separate regions in a file (they use special
instructions to switch from one mode to the other [41]).
A possible direction is to identify patterns (e.g., certain
control transfer instructions) that indicate switching/jumping
between modes. The two most popular ones are the branch-
and-exchange (BX) instruction, and branch-with-link-and-
exchange (BLX) instruction [41]. Also, LDR/LDM and POP
instructions can cause a mode switch depending on the least
significant bit of the program counter. Using these patterns,
one can recognize sections generated from mode switching,
which helps to minimize breaking 32-bit instructions. Another
direction is to combine Loadstar (with mode switching
detection) and superset disassembly to improve accuracy.

(2) MIPS: According to two measurement studies [8], [20],
MIPS is the second most common ISA in the IoT/ICS domain
(right after ARM). MIPS is also a fixed-length instruction set
architecture like ARM, which means Loadstar is potentially

applicable. As stated above, the challenge is to label the
“ground-truth” binaries for an extensive evaluation. (3) x86:
x86 has variable-length instructions and is not commonly
seen in the IoT/ICS space [8], [20]. As such, x86 is out of
our current scope. To apply the idea to x86, the main point of
change should be input representation because linear sweep
can be error-prone for x86. Instead, we should formulate/label
the inputs at the byte level (instead of the instruction level)
and construct the model accordingly (e.g., like XDA). That
being said, the idea of pseudo-labeling and label correction
can be applied similarly to x86.

7. Related Work

Binary Analysis. Researchers have investigated a wide
range of binary analysis techniques from decompilation [42]
to binary instrumentation [4], [43] as well as complex
frameworks [44], [45] that combine static analysis with
other techniques such as symbolic execution [3], [46] and
fuzzing [47]–[49]. Recently, researchers explored the use
of deep learning for different binary analysis tasks. A
major area of focus in function similarity analysis [50]–[55],
which can be used to search for vulnerable or proprietary
functions in binaries. An extension of this line of research
is cross-architecture binary code analysis [1], [13], [56]–
[59] which helps in finding bugs or similar functions across
different architectures. In addition, deep learning has been
applied to other binary analysis tasks such as function
name prediction, extracting function type signatures, and
value-set analysis [14], [15], [60]–[62]. Most of these tasks
rely on disassembled code or information extracted from
disassembled code. Therefore, disassembly is an important
first step.
Disassembly. Traditional disassembly tools fall under three
categories: linear sweep [7], [25], recursive traversal [5], [6],
[63], [64], and probabilistic disassembly [36]. For linear
sweep, the disassembler (e.g., Radare2) assumes all bytes
are code bytes and decodes the instructions accordingly.
This assumes all instructions are sequential and does not
consider control or data flow. This method is lightweight but
can introduce major false positives [11]. Recursive traversal
disassemblers, such as Ghidra and IDA Pro, start at a given
point (usually the program’s entry point) and then follow the
control flow of the binary. Although these tools considerably
reduce false positives, they rely on information not readily
available for non-standard binaries. Additionally, this method
can miss indirect jumps which leads to incomplete disassem-
bly results. Finally, probabilistic disassembly [36], [65], [66]
is based on superset disassembly [67], which returns a super
set of possible disassembly results by considering all bytes
as potential starting points. The disassembler then calculates
the probability of each generated output to be a valid output.
The probability calculation can be based on either heuristics
or machine learning.
Data-Code Separation. Disassemblers need to perform
code and data separation (or code discovery) as an initial
step for accurate disassembly. For standard binaries, de-

tecting “code sections” can be easily done based on their
known formats (and information in the header) [5]. Existing
research is mainly focused on further detecting inline data
within the code sections for standard binaries for the x86
architecture [68], [69]. Automating the binary analysis for
non-standard binaries is still an open problem, and our paper
explored the data-code separation problem as an initial step.
IoT Binary/Firmware. Recent research has investigated
attacks against IoT devices [9], [70] including attacks that
are specifically tailored for PLC devices [24], [39], [71], [72].
To design countermeasures, researchers have studied defense
techniques such as attack detection [73], fuzzing [39], [74],
patching [75], instrumentation [76] and techniques to ensure
control flow integrity [77], [78]. Additionally, there have
been attempts to build IoT-specific analysis tools [18], [20],
[79]. These tools often require significant reverse engineering
efforts to develop.
Semi-Supervised Learning. Semi-supervised learning
bridges the gap between supervised and unsupervised learn-
ing by utilizing both labeled and unlabeled data for training.
Pseudo-labeling [80] is one of the techniques used in semi-
supervised learning. It works by generating pseudo labels
based on either the labeled data or the model trained on the
labeled data (or both). These pseudo labels are then used
for retraining the model. Several recent research efforts [81]–
[83] have shown competitive results. Most existing methods
are applied to image/text classification with a few exceptions
that are focused on security applications (e.g., malware de-
tection) [84], [85]. Existing pseudo-label generation is often
based on statistical properties. Our method is specifically
designed for binary analysis, by introducing pseudo-label
correction based on a set of domain knowledge of binary
executables and compilers.

8. Conclusion

This paper introduces Loadstar to automate data-code
separation for non-standard binaries by combining deep
learning with domain knowledge. The key idea is to use
the abundant labeled data from standard binaries to train
a classifier and adapt it to process unlabeled non-standard
binaries. Pseudo-label correction is introduced to serve as
the guardrail for domain adaptation. We evaluate Loadstar
using three datasets of non-standard PLC ARM binaries and
demonstrate the effectiveness and efficiency of the proposed
method. We will share the tool with the community, which
can open the door for more accurate and accessible binary
analysis on non-standard binaries in the IoT/ICS domain.

Acknowledgments

This work was supported in part by the National Science
Foundation (NSF) under grants 2229876, 2055233, and
2326576. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of their employers
or sponsors.

References

[1] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” NDSS, 2016.

[2] A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “Ecfi: Asynchronous
control flow integrity for programmable logic controllers,” ACSAC,
2017.

[3] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Krügel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” NDSS, 2015.

[4] S. Priyadarshan, H. Nguyen, R. Chouhan, and R. C. Sekar, “Safer:
Efficient and error-tolerant binary instrumentation,” USENIX Security,
2023.

[5] NSA, “Ghidra,” https://ghidra-sre.org/, 2024.

[6] I. Guilfanov, “Ida pro,” https://hex-rays.com/ida-pro/, 2024.

[7] S. Alvarez, “Radare2,” https://rada.re/n/, 2024.

[8] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” USENIX Security,
2014.

[9] R. Tsang, D. P. Joseph, Q. Wu, S. Salehi, N. A. Carreon, P. Mohapatra,
and H. Homayoun, “Fandemic: Firmware attack construction and
deployment on power management integrated circuit and impacts on
iot applications,” NDSS, 2022.

[10] S. Yu, Y. Qu, X. Hu, and H. Yin, “Deepdi: Learning a relational graph
convolutional network model on instructions for fast and accurate
disassembly,” USENIX Security, 2022.

[11] Y. Ye, Z. Zhang, Q. Shi, Y. Aafer, and X. Zhang, “D-arm: Disassem-
bling arm binaries by lightweight superset instruction interpretation
and graph modeling,” IEEE SP, 2023.

[12] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. S. Jana, “Xda:
Accurate, robust disassembly with transfer learning,” NDSS, 2020.

[13] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. X. Song, “Neural
network-based graph embedding for cross-platform binary code
similarity detection,” CCS, 2017.

[14] J. Patrick-Evans, M. Dannehl, and J. Kinder, “Xfl: Naming functions
in binaries with extreme multi-label learning,” IEEE SP, 2023.

[15] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code
embeddings,” CCS, 2022.

[16] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” USENIX Security, 2015.

[17] H. Benkraouda, A. Agrawal, D. Tychalas, M. Sazos, and M. Mani-
atakos, “Towards plc-specific binary analysis tools: An investigation
of codesys-compiled plc software applications,” CPSIoTSec, 2023.

[18] A. Keliris and M. Maniatakos, “ICSREF: A framework for automated
reverse engineering of industrial control systems binaries,” NDSS,
2019.

[19] K. A. Stouffer, J. A. Falco, and K. A. Scarfone, “Sp 800-82. guide
to industrial control systems (ics) security: Supervisory control and
data acquisition (scada) systems, distributed control systems (dcs),
and other control system configurations such as programmable logic
controllers (plc),” NIST, Gaithersburg, MD, United States, Tech. Rep.,
2011.

[20] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu, and R. A. Beyah, “A large-scale empirical analysis
of the vulnerabilities introduced by third-party components in iot
firmware,” ISSTA, 2022.

[21] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. B. Butler,
“Firmusb: Vetting usb device firmware using domain informed symbolic
execution,” CCS, 2017.

[22] X. Meng and B. P. Miller, “Binary code is not easy,” ISSTA, 2016.

[23] C. Pang, T. Zhang, R. Yu, B. Mao, and J. Xu, “Ground truth for
binary disassembly is not easy,” USENIX Security, 2022.

[24] E. L’opez-Morales, U. Planta, C. Rubio-Medrano, A. Abbasi, and
A. A. Cardenas, “Sok: Security of programmable logic controllers,”
USENIX Security, 2024.

[25] G. Project, “Objdump,” https://web.mit.edu/gnu/doc/html/binutils 5.html,
1983.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, 1997.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
NAACL, 2019.

[28] H. Benkraouda, N. Diwan, and G. Wang, “Supplementary materi-
als: Bert implementation details,” https://github.com/Benksy/Loadstar,
2024.

[29] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., 2000.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” ICLR, 2013.

[31] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositional-
ity,” NIPS, 2013.

[32] H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang,
and Z. Xue, “Code is not natural language: Unlock the power of
semantics-oriented graph representation for binary code similarity
detection,” Usenix Security, 2024.

[33] X. Li, Q. Yu, and H. Yin, “Palmtree: Learning an assembly language
model for instruction embedding,” CCS, 2021.

[34] F. Chollet, “Keras,” https://keras.io/, 2015.

[35] Google, “Tensorflow,” https://www.tensorflow.org/, 2015.

[36] K. A. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin,
“Probabilistic disassembly,” ICSE, 2019.

[37] J. Clemens, “Automatic classification of object code using machine
learning,” Digital Investigation, 2015.

[38] E. N. McKay and M. Woodring, Debugging windows programs: Strate-
gies, tools, and techniques for visual C++ programmers. Addison-
Wesley, 2000.

[39] D. Tychalas, H. Benkraouda, and M. Maniatakos, “Icsfuzz: Manipulat-
ing i/os and repurposing binary code to enable instrumented fuzzing
in ICS control applications,” USENIX Security, 2021.

[40] X. Tan, Z. Ma, S. Pinto, L. Guan, N. Zhang, J. Xu, Z. Lin, H. Hu,
and Z. Zhao, “SoK: Where’s the “up”?! a comprehensive (bottom-up)
study on the security of arm Cortex-M systems,” WOOT, 2024.

[41] J.-Y. Chen, B.-Y. Shen, Q. Ou, W. Yang, and W. Hsu, “Effective
code discovery for arm/thumb mixed isa binaries in a static binary
translator,” CASES, 2013.

[42] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” IEEE SP, 2016.

[43] L. Bartolomeo, H. Moghaddas, and M. Payer, “Armore: Pushing love
back into binaries,” USENIX Security, 2023.

[44] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach
to computer security via binary analysis,” ICISS, 2008.

[45] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” CAV, 2011.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
IEEE SP, 2016.

[47] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Krügel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,”
CCS, 2017.

[48] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,”
USENIX Security, 2013.

[49] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” NDSS, 2016.

[50] A. Marcelli, M. Graziano, and M. Mansouri, “How machine learning
is solving the binary function similarity problem,” USENIX Security,
2022.

[51] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q. Zeng, “Neural
machine translation inspired binary code similarity comparison beyond
function pairs,” NDSS, 2019.

[52] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters:
Semantic-aware neural networks for binary code similarity detection,”
AAAI, 2020.

[53] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” NDSS, 2020.

[54] K. Pei, Z. Xuan, J. Yang, S. S. Jana, and B. Ray, “Learning approximate
execution semantics from traces for binary function similarity,” IEEE
Transactions on Software Engineering, 2023.

[55] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary
code similarity analysis using interpretable feature engineering and
lessons learned,” IEEE Transactions on Software Engineering, 2020.

[56] J. Wang, M. Sharp, C. Wu, Q. Zeng, and L. Luo, “Can a deep learning
model for one architecture be used for others? retargeted-architecture
binary code analysis,” USENIX Security, 2023.

[57] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu,
and K. Lu, “Vulhawk: Cross-architecture vulnerability detection with
entropy-based binary code search,” NDSS, 2023.

[58] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” IEEE SP, 2015.

[59] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “α diff:
Cross-version binary code similarity detection with dnn,” ASE, 2018.

[60] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” USENIX Security, 2017.

[61] W. Guo, D. Mu, X. Xing, M. Du, and D. X. Song, “Deepvsa:
Facilitating value-set analysis with deep learning for postmortem
program analysis,” USENIX Security, 2019.

[62] E. C. R. Shin, D. X. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” USENIX Security, 2015.

[63] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A
binary analysis platform,” International Conference on Computer
Aided Verification, 2011.

[64] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary
analysis,” SecDev, 2017.

[65] R. Wartell, Y. Zhou, K. W. Hamlen, and M. Kantarcioglu, “Shingled
graph disassembly: Finding the undecideable path,” Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2014.

[66] A. Flores-Montoya and E. M. Schulte, “Datalog disassembly,” USENIX
Security, 2019.

[67] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly:
Statically rewriting x86 binaries without heuristics,” NDSS, 2018.

[68] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thu-
raisingham, “Differentiating code from data in x86 binaries,” ECM-
L/PKDD, 2011.

[69] N. Karampatziakis, “Static analysis of binary executables using
structural svms,” NIPS, 2010.

https://github.com/Benksy/Loadstar

[70] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” IEEE SP, 2016.

[71] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mo-
hammed, and S. Zonouz, “Hey, my malware knows physics! attacking
plcs with physical model aware rootkit,” NDSS, 2017.

[72] E. Sarkar, H. Benkraouda, and M. Maniatakos, “I came, i saw, i hacked:
Automated generation of process-independent attacks for industrial
control systems,” AsiaCCS, 2020.

[73] X. Tan and Z. Zhao, “Sherloc: Secure and holistic control-flow
violation detection on embedded systems,” CCS, 2023.

[74] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing,” NDSS, 2018.

[75] P. H. N. Rajput, C. Doumanidis, and M. Maniatakos, “Icspatch:
Automated vulnerability localization and non-intrusive hotpatching
in industrial control systems using data dependence graphs,” Usenix
Security, 2022.

[76] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” IEEE SP,
2020.

[77] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µrai:
Securing embedded systems with return address integrity,” NDSS,
2020.

[78] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,”
USENIX Security, 2013.

[79] H. Wen and Z. Lin, “Egg hunt in tesla infotainment: A first look at
reverse engineering of qt binaries,” USENIX Security, 2023.

[80] D.-H. Lee, “Pseudo-label : The simple and efficient semi-supervised
learning method for deep neural networks,” Workshop on challenges
in representation learning, ICML, 2013.

[81] B. Zhang, Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, and
T. Shinozaki, “Flexmatch: Boosting semi-supervised learning with
curriculum pseudo labeling,” NeurIPS, 2021.

[82] P. Cascante-Bonilla, F. Tan, Y. Qi, and V. Ordonez, “Curriculum
labeling: Revisiting pseudo-labeling for semi-supervised learning,”
AAAI, 2020.

[83] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuin-
ness, “Pseudo-labeling and confirmation bias in deep semi-supervised
learning,” IJCNN, 2019.

[84] Y. Chen, Z. Ding, and D. A. Wagner, “Continuous learning for android
malware detection,” USENIX Security, 2023.

[85] S. Thirumuruganathan, M. Nabeel, E. Choo, I. M. Khalil, and T. Yu,
“Siraj: A unified framework for aggregation of malicious entity
detectors,” IEEE SP, 2022.

Appendix A.
List of Standard Binary Formats

Table 11 shows the standard binary file formats that
existing binary analysis tools support.

Appendix B.
Adapting XDA for Data-Code Separation

To transfer XDA to perform data-code separation for
non-standard PLC ARM binaries, we make the following
adaptations. First, we pre-train the model for ARM binaries
using a randomly selected set of 103 million instructions
from our standard binaries (dataset S). Second, we then fine-
tune the model to perform instruction boundary detection.

Tools Supported File Formats

Radare2

ELF, Mach-O, Fatmach-O, PE, PE+, MZ, COFF, XCOFF,
OMF, TE, XBE, SEP64, BIOS/UEFI, Dyldcache, DEX,
ART, Java class, Android boot image, Plan9 executables,
Amiga HUNK, ZIMG, MBN/SBL bootloader, ELF coredump,
MDMP, PDP11, XTAC, CGC, WASM,
Commodore VICE emulator, QNX, WAD, OFF, TIC-80,
GB/GBA, NDS and N3DS, filesystems
(NTFS, FAT, HFS+, EXT)

IDA Pro

NE, LX, LE, PE, Windows CE PE, Mach-O, DEX,
EXE File, EPOC, DMP, XBE, Intel Hex, NLM, COFF,
Raw Binary, OMF file/library, S-record format,
ZIP archive, JAR archive, ELF, AIAFF, PEF,
Sony Playstation PSX executable files, object (psyq) files,
library (psyq) files, W32RUN, AOUT, N64, SMC,
MOS Technology Hex Object File, PalmPilot program file,
QNX 16 and 32-bits, Motorola DSP56000 .LOD,
Sony Playstation PSX executable files, MS DOS
(+COM File, Driver)

Ghidra

XML Input Format, Android APK, COFF, DYLD Cache,
DEX, DBG, Dump File Loader, ELF, Java Class File,
MS COFF, Mach-O, DEF, NE, PE, PEF, MAP, OMF, MZ,
Intel Hex, Motorola Hex, CDEX, Raw Binary,
GZF Input Format, Ghidra Data Type Archive Format

Binary Ninja ELF, Mach-O, PE, COFF, NES, Raw Binary

TABLE 11: Supported formats by commercial tools

This fine-tuning process is supervised, using labeled data
(700K instructions randomly sampled from standard ARM
binaries). Note that XDA’s ground-truth label is different
from our system (Loadstar). For XDA, the label is applied
to each byte to indicate whether the byte represents the
“start of an instruction” (denoted by “S”), the “body of an
instruction” (denoted by “B”), or others (denoted by “-”). For
the data-code separation task, “S” and “B” are regarded as
“code”, and any “-” predictions are regarded as “data”. For
our XDA training, both data and code sections are used by re-
coding the labels as “S”, “B” and “-” labels. We use the same
hyperparameters set by the authors in their released code
for both pre-training and model fine-tuning. We pre-train the
model for 30 epochs and fine-tune the model for another 30
epochs. The evaluation/testing of the XDA model uses non-
standard binary datasets. We feed 510-byte sequences to the
fine-tuned model. The predicted labels are then mapped back
to ”code“ and “data” to calculate the inference accuracy.

Appendix C.
Labeling Non-Standard Binaries

This section provides extra details on our method of
labeling non-standard binaries, in particular, how we label
inline data. Labeling the “ground truth” for disassembly
tasks is a challenging task [23], which is further exacerbated
for non-standard binaries given most existing tools are not
applicable. For data-code separation, our labeling method
contains two primary phases.

In the first phase, we use ICSREF [18] for coarse-grained
labeling. This tool has been developed based on significant
reverse engineering efforts to analyze PLC binaries. The tool
systematically identifies all subroutines within a PLC binary,
including primary functions and helper subroutines. It also
detects any data bytes appended to these subroutines. We
use this information to label the bytes/instructions within
the detected subroutines as “code” and the trailing bytes as

(a) Ground-truth (b) XDA (c) BERT (d) Loadstar (before it-
erative training)

(e) Loadstar (after iter-
ative training)

Figure 6: An extra example: visualization of a non-standard binary file.

Method Correction
Level

Correction
Direction Implementation Details

Short Sec Short Data Seq Data → Code Find all data sequences that are shorter than threshold (w) and change their label to code.
Short Code Seq Code → Data Find all code sequences that are shorter than threshold (w) and change their label to data.

Br Dest Br →→ Mid Inst Code → Data Find all branch instructions, and check whether their destination is divisible by 4. If the
destination is not divisible by 4 and the prediction is code, change it to data.

Br →→ Top Inst Data → Code Find all branch instructions, check whether their destination is divisible by 4. If the
destination is divisible by 4 and the prediction is data, change it to code.

Cmp-Br Cmp-Br(c) Inst Data → Code Find all conditional branches, and check whether the preceding instruction is a cmp. If the
previous instruction is a cmp and the prediction of the br instruction is data, change it to code.

NotCmp-Br(c) Inst Code → Data Find all conditional branches, and check whether the preceding instruction is not a cmp. If the
previous instruction is not a cmp and the prediction of the br instruction is code, change it to data.

Def-Use

Def-Use Seq Data → Code Check if either mov/ldr is followed by a str instruction within a window of 16, if it exists
and the predicted label for mov/ldr is data change all the sequence to code.

Def(c)-Use(c) Seq Data → Code Check if either (cond)mov/ldr is followed by a (cond)str instruction within a window of 16,
if it exists and the predicted label for mov/ldr is data change all the sequence to code.

Def(c)-Use Seq Data → Code Check if either (cond)mov/ldr is followed by a str instruction within a window of 16, if it
exists and the predicted label for mov/ldr is data change all the sequence to code.

Def-Use(c) Seq Data → Code Check if either mov/ldr is followed by a (cond)str instruction within a window of 16, if it
exists and the predicted label for mov/ldr is data change all the sequence to code.

Rep-Addrs Inst Data → Code
Find all repeated (at least 2 times) addresses (per file), then go through the binary and check each
if address exist in the repeated addresses list. If it does and the instruction that the address
belongs to is labeled as data switch it to code.

Inst-Suffix Inst Code → Data Check if the instruction has 1 or 2 suffixes, if it does and is labeled as code, change it to data.

Operand Inst Code → Data
Check the operand type in the instructions, if any of these operand types: co-processor regs,
floating point regs, shift ops, write-back mark are present and the instruction is labeled as code,
change it to data.

TABLE 12: Summary of the domain-knowledge-based rules to make corrections to pseudo labels. Corrections are made
either on individual instructions (Inst) or a sequence of instructions within the related window (Seq).

“data”. In addition, any addresses that are not included within
the detected subroutines were classified as “data”.

In the second phase, we manually analyze randomly
selected binaries from the different non-standard datasets.
This intensive process required approximately one person-
week. We start by analyzing the output from the coarse-
grained labels (based on the outputs of ICSREF). We first
locate any instructions decoded as inavlid and yet labeled
as “code”. Second, we locate uncommon/unconventional
instructions labeled as “code”. We rely on intuition and
our domain knowledge when considering instructions as
unconventional. For example, the “presence of numerous
suffixes” or “branching to atypically large addresses” are
signals of unconventional instructions for further analysis.
Finally, we undertake a meticulous line-by-line review of
the code sections, carefully following the logical flow of
instructions and comprehending the functional intent of each
code snippet.

Through these two phases, we identify key patterns that
help to label inline data. The first pattern is illustrated in

Figure 7(a). This pattern starts with an unconditional branch
(highlighted in green). This branch allows the introduction of
a block of data bytes without interfering with the logic of the
code instructions. This is then followed by a NOP instruction
(usually “mov r0, r0”), followed by 0xCDCDCDCD (a pattern
used to indicate memory initialization). The addresses that
follow this “prologue” pattern are addresses used in ldr
instructions (highlighted in red, yellow, and blue). All of
these factors solidify that these bytes are indeed data bytes.
The second pattern we find (Figure 7(b)) was a branch
and link instruction (highlighted in green) preceded by an
instruction that saves the link register (LR) (highlighted
in yellow) and succeeded by data bytes. These bytes were
decoded and included error messages, month names, and
prompts. In the example shown in Figure 7(b), it shows an
error message for illegal function code. This is then followed
by an instruction that restores the LR register (highlighted
in yellow). These two patterns are repeated multiple times
in all the files we manually analyzed. These patterns were

(a) Example 1

(b) Example 2

Figure 7: Labeling inline data for non-standard binaries.

Test Data Code
Set P R F1 F1* P R F1 F1*

S 0.982 0.997 0.990 0.774 0.989 0.927 0.957 0.962
NS 1 0.991 0.986 0.989 0.975 0.996 0.997 0.997 0.998
NS 2 0.980 0.962 0.971 0.954 0.996 0.998 0.997 0.997
NS 3 0.842 0.966 0.900 0.856 0.987 0.935 0.960 0.964

TABLE 13: Transferring from NS 2 to other datasets. We
perform iterative training with (NS 2) and then test it on
standard (S) and non-standard binaries (NS 1, NS 2, NS 3).

then used to automatically correct the other files to rectify
erroneously labeled inline data.

Appendix D.
Extra Transferability Results

We repeat the same transferability experiments in Sec-
tion 5.5, by using NS 2 (or NS 3) to generate pseudo labels
for classifier retraining. The classifier is then tested on all
different testing sets. Table 13 shows the result for NS 2,
and Table 14 shows the result for NS 3. The conclusion is
consistent with Section 5.5. A classifier tuned with NS 2
training set performs the best on the NS 2’s testing set. The
same observation can be made for the NS 3 experiment.

Test Data Code
Set P R F1 F1* P R F1 F1*

S 0.982 0.997 0.990 0.774 0.989 0.927 0.957 0.962
NS 1 0.596 0.983 0.742 0.414 0.994 0.827 0.903 0.904
NS 2 0.333 0.976 0.496 0.356 0.997 0.823 0.902 0.903
NS 3 0.977 0.960 0.968 0.955 0.986 0.992 0.989 0.991

TABLE 14: Transferring from NS 3 to other datasets. We
perform iterative training with (NS 3) and then test it on
standard (S) and non-standard binaries (NS 1, NS 2, NS 3).

Appendix E.
Domain Knowledge Variations

As discussed in Section5.2, we suspect the “repeated-
address” (Rep-Addrs) rule does not work well because
there are too many hits in the data section. Here, we run
experiments to (1) examine this intuition, and (2) explore
ways to improve this rule.

First, to confirm the intuition, we first remove the
large “ground-truth” data section at the end of the binary
and apply the Rep-Addrs rule to the remaining area, a
similar experiment of Table 3. We find this indeed leads
to positive improvements (∆F1 D=0.024, ∆F1* D=0.048,
∆F1 C=0.011, ∆F1* C=0.011)). This is different from the
negative ∆F1 D and ∆F1 C in Table 3. This shows our
intuition is correct.

Second, however, in practice, we do not have the
“ground truth” of the data section in non-standard binaries.
Realistically, we may use the predicted “pseudo labels”
(instead of ground truth) to locate/remove the largest data
section (which can be inaccurate). We then repeat the above
experiment, but this leads to decreased F1 and F1* (∆F1 D=-
0.068, ∆F1* D=-0.087, ∆F1 C=-0.015, ∆F1* C=-0.015).
This indicates this rule may not be usable in practice.

Appendix F.
Extra Results for Iterative Training

Figure 4 shows the model achieves high F1/F1* scores
on the unseen/withheld testing dataset. In practice, we can
determine when to stop the iterative training, by counting the
number of label corrections on both the training and testing
sets for each iteration round.

First, we count the number of pseudo-label corrections in
each round (measured on the training set), all compared to the
R0 initial classifier. We show that R1 has the largest correc-
tions: R1=155,420 (6.33%), R2=13,216 (0.54%), R3=12,557
(0.51%), and R4=12,432 (0.51%). This indicates we can stop
iterative training after R1.

Second, We also count the changes in the testing results
for each round (the testing set), all compared with the R0
initial classifier. We observe the same conclusion: R1=84,514
(3.44%), R2=939 (0.038%), R3=953 (0.038%), and R4=365
(0.015%). After the first round, for our datasets, we observe
a plateauing in a performance gain.

Appendix G.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

G.1. Summary

The paper presents a methodology that combines machine
learning and pseudo-label correction to automate data-code
separation in non-standard binaries, utilizing labeled data
from standard binaries.

G.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

G.3. Reasons for Acceptance

1) The paper addresses the data-code separation challenge
in non-standard raw binary analysis, which is a critical
step in obtaining accurate disassembly and performing
further analysis.

2) The paper explores several creative ideas, including us-
ing language models for instruction embedding, training
a new embedding model for ARM binaries with the
lightweight Palmtree model and standard binaries, and
adding rules for pseudo-label correction based on code
characteristics.

G.4. Noteworthy Concerns

1) The presented system is only able to distinguish the
code and data section of fixed-length instruction set
architectures.

2) The initial classifier trained on standard binaries might
not perform well on non-standard binaries without
adequate domain adaptation, leading to lower accuracy
in the pseudo labels.

3) The evaluation focuses on PLC binaries under the ARM
instruction set. The generalizability to other types of non-
standard binaries and instruction sets is not considered.

Appendix H.
Response to the Meta-Review

The authors agree with the meta-review in general, and
would like to provide extra context for the noteworthy
concern (2). The initial classifier trained on standard binaries
is used to produce the preliminary pseudo labels. It is not
supposed to be very accurate before pseudo-label correction.
Indeed, if this initial classifier is too inaccurate, a potential

concern is that pseudo-label correction may not be enough
to recover the true labels. We did not run into this issue
during our evaluation. Intuitively, standard and non-standard
binaries share key similarities, which makes domain transfer
possible (e.g., instruction structure, decoding rules, registers).
As such, it is reasonable to assume the initial classifier has a
decent accuracy to start with. In practice, one may use more
diverse standard binary samples to train the initial classifier
to ensure the accuracy of the preliminary pseudo labels.

	Introduction
	Background and Motivation
	Standard vs. Non-standard Binaries
	Data-Code Separation Problem
	Applying Prior Work to Non-standard Binaries
	Scope of This Paper

	High-level System Design
	Design Goals
	Overview of Loadstar

	System Design Details
	Embedding Model
	Classification Model
	Pseudo-Label Generation and Correction
	Re-Training

	Evaluation
	Datasets and Experimental Setup
	RQ1: Domain Knowledge (Design Choices)
	RQ2: Effectiveness
	RQ3: Efficiency
	RQ4: Transferability

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: List of Standard Binary Formats
	Appendix B: Adapting XDA for Data-Code Separation
	Appendix C: Labeling Non-Standard Binaries
	Appendix D: Extra Transferability Results
	Appendix E: Domain Knowledge Variations
	Appendix F: Extra Results for Iterative Training
	Appendix G: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix H: Response to the Meta-Review

