Editing Models with Task Arithmetic

Gabriel Ilharco^{*1} **Marco Tulio Ribeiro**² **Mitchell Wortsman**¹ **Suchin Gururangan**¹ **Ludwig Schmidt**^{1,3} **Hannaneh Hajishirzi**^{1,3} **Ali Farhadi**¹ ¹University of Washington ²Microsoft Research ³Allen Institute for AI

UNIVERSITY of WASHINGTON

International Conference on Learning (ICLR) 2023

Outline

- 1) Motivation
- 2) Literature Review
- 3) Main Idea
- 4) Applications
- 5) Intuition
- 6) Limitations
- 7) Future Directions

Motivation: Modifying the Behaviour of Pre-trained Models

Mitigating biases from pre-trained models

	<u>ا</u> م	INSIDER	Newsletters Log in Subscribe	
	HOME > NEWS			
	ChatGP	T could be used for good, but	t like many	
	other A	I models, it's rife with racist a inatory bias	nd	
	uisciiii	inator y blas		
Article Published: 23 Mar	<u>ch 2022</u>			

AI

Large pre-trained language models contain humanlike biases of what is right and wrong to do

Patrick Schramowski ⊠, Cigdem Turan ⊠, Nico Andersen, Constantin A. Rothkopf & Kristian Kersting

Nature Machine Intelligence 4, 258–268 (2022) Cite this article

2681 Accesses | 7 Citations | 155 Altmetric | Metrics

Here are a few ways GPT-3 can go wrong

Liz O'Sullivan, John Dickerson / 9:45 AM CDT • August 7, 2020

Motivation: Modifying the Behaviour of Pre-trained Models

Multi-task Capabilities

Literature Review

Patching Editing Modifying Alignment Debugging Steering

Common Methods - Fine-tuning^{1,2}, Sparse Parameter Tuning^{3,4}, Reinforcement Learning through Human Feedback (RLHF)^{5,6}

Limitations - Efficiency, Catastrophic Forgetting, Hard to Add/Remove Tasks *References in last slide

Main Idea: Play with Arithmetic Operations in Weight Space

$$\boldsymbol{\tau} = \theta_{ft} - \theta_{pre}$$

Element-Wise Difference

$$\tau \longrightarrow \text{``Task Vector''}$$

$$\theta_{pre} \longrightarrow \text{Pre-trained Weights}$$

$$\theta_{ft} \longrightarrow \text{Fine-tuned Weights}$$

Main Idea: Play with Arithmetic Operations in Weight Space

$$\theta_{new} = \theta + \lambda \tau$$

Element-Wise Addition

$$\lambda \longrightarrow$$
 Scalar Hyperparameter
 $\theta \longrightarrow$ Weights (Same Architecture)
 $\theta_{new} \longrightarrow$ Task Added Weights

Application: Forgetting via Negation

Goal : Unlearning Undesired Biases of Pre-trained Model

1. Find Task Vector

2. Negate Task Vector

3. Add to Pre-trained Weights

Results: Forgetting via Negation

Negative Target Task: Making Language Model Produce Toxic Content

Negative Target Tasks (\downarrow)	Control Task
--------------------------------------	--------------

Method	% toxic generations (\downarrow)	Avg. toxicity score (\downarrow)	WikiText-103 perplexity (\downarrow)	
Pre-trained	4.8	0.06	16.4	
Fine-tuned	57	0.56	16.6	
Gradient ascent Fine-tuned on non-toxic Random vector	$0.0 \\ 1.8 \\ 4.8$	0.45 0.03 0.06	$>10^{10}$ 17.2 16.4	
Negative task vector	0.8	0.01	16.9	
	6x Red	uction in Toxic Conten	t ~ Similar Perplexit	

Application: Learning Via Addition

Goal : Multi-task Learning

$$\tau_{\text{new}} = \tau_A + \tau_B$$

$$\theta_{new} = \theta_{pre} + \lambda \tau_{new}$$

Application: Multi-task Learning

Build a model that can

- (a) Classify Digits Images : 0,1, 2 9
- (b) Classify Car Images: Mercedes, Tesla, Toyota

$$\tau_{multi} = \tau_{Digits} + \tau_{Car}$$

$$\theta_{multi} = \theta_{pre} + \lambda \tau_{multi}$$

Results: Multi-task Learning

Adding Task Vectors for Multi-task Learning

Average Performance Of Tasks

Average Normalized Performance

Task Performance

Different Image Classification Tasks

Application: Task Analogies

A is to B as C is to (D?)

Results: Domain AdaptationFine-tuned on Auxiliary Data for
Language Modeling
$$\hat{\tau}_{target; sent} = \tau_{target; lm} + (\tau_{auxiliary; sent} - \tau_{auxiliary; lm})$$

Fine-tuned on Target Dataset for Language Modelling

	target = Yelp			target = Amazon		
Method	T5-small	T5-base	T5-large	T5-small	T5-base	T5-large
Fine-tuned on auxiliary	88.6	92.3	95.0	87.9	90.8	94.8
Task analogies	89.9	93.0	95.1	89.0	92.7	95.2
Fine-tuned on target	91.1	93.4	95.5	90.2	93.2	95.5

Detour: An Observation on the Results

	target = Yelp			target = Amazon		
Method	T5-small	T5-base	T5-large	T5-small	T5-base	T5-large
Fine-tuned on auxiliary	88.6	92.3	95.0	87.9	90.8	94.8
Task analogies	89.9	93.0	95.1	89.0	92.7	95.2
Fine-tuned on target	91.1	93.4	95.5	90.2	93.2	95.5

Initial Gap is Not Large !!!

man

woman

 $\tau_{\text{queen}} + (\tau_{\text{man}} - \tau_{\text{woman}}) = ?$

Results: Learning through Analogies

$\tau_{\text{queen}} + (\tau_{\text{man}} - \tau_{\text{woman}}) = \hat{\tau}_{\text{king}}$

Intuition

Hypothesis is based related empirical work of interpolation of weights -

a) Results of Ensembling Weights ~ Results of Ensembling Predictions¹

b) Performance improves linearly when fine-tuning

¹Robust fine-tuning of zero-shot models (CVPR 2022)

Why Task Arithmetic works well?

- Task Vectors are close to Orthogonal
- Combining Multiple Task Vectors ~ Minimal Interference

Cosine similarity between task vectors

Similar Tasks ~ Higher Similarity

Strengths

- Efficient : Only Element Wise Operations b/w matrices
- Modular : Add/Remove Abilities to Models
- Retain Control Task Performance
- Strong Empirical Results

Limitations

- Architecture Restrictions
- Sensitive to High Learning Rate
- Negative Interference in Multi-task Learning

Limitations: Architecture Restricted

- Element-Wise Operation: Restricted to same Architecture
- All experiments on same pre-trained initialization
- Only works for the fine-tuning regime

Limitation: Sensitive to High Learning Rate

Limitation: Multi-task Learning

Still Room For Improvement!

Different Image Classification Tasks

Future Directions

- Expanding this framework:
 - Architecture-Invariant
 - Multi-Modal Architectures
- Exploring the Weight Space of Models in Depth²

¹Knowledge is a Region in Weight Space for Fine-tuned Language Models (ICLR 2023)

Questions?

Thanks!

Literature Review References

[1] Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." arXiv preprint arXiv:1801.06146 (2018).

[2] Fu, Zihao, et al. "On the Effectiveness of Parameter-Efficient Fine-Tuning." arXiv preprint arXiv:2211.15583 (2022).

[3] Karan Goel, Albert Gu, Yixuan Li, and Christopher Re. Model patching: Closing the sub- group performance gap with data augmentation, 2020. https://arxiv.org/abs/2008. 06775.

[4] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In Advances in Neural Information Processing Systems (NeurIPS), 2021. https://arxiv.org/abs/2111.09839.

[5] Christiano, Paul F., et al. "Deep reinforcement learning from human preferences." Advances in neural information processing systems 30 (2017).

[6] Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of nlp models. In Annual Meeting of the Association for Computational Linguistics (ACL), 2022. https://aclanthology.org/2022.acl-long.230/.

Image References

- 1) University of Washington Image
- 2) <u>Microsoft Research</u>
- 3) <u>AI-2 Image</u>
- 4) Insider ChatGPT Image
- 5) <u>TechCruch GPT3 Image</u>

Rest of the Images are from the paper