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Motivation: Modifying the Behaviour of Pre-trained Models

Mitigating biases from pre-trained models
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ChatGPT could be used for good, but like many
other Al models, it's rife with racist and
discriminatory bias
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Large pre-trained language models contain human-
like biases of what is right and wrong to do

Here are a few ways GPT-3 can
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Motivation: Modifying the Behaviour of Pre-trained Models

Multi-task Capabilities

PLM

O

NLI

*PLM - Pretrained Language Model



Literature Review

Alignment

Common Methods - Fine-tuning'?, Sparse Parameter Tuning**,
Reinforcement Learning through Human Feedback (RLHF)>®

Limitations - Efficiency, Catastrophic Forgetting, Hard to Add/Remove
Tasks

*References in last slide



Main Idea: Play with Arithmetic Operations in Weight Space
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Main Idea: Play with Arithmetic Operations in Weight Space

Onew = 0 + A7

Element-Wise Addition

)\ — Scalar Hyperparameter
9 — Weights (Same Architecture)

onew —— Task Added Weights



Application: Forgetting via Negation

Goal : Unlearning Undesired Biases of Pre-trained Model
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1. Find Task Vector 2. Negate Task Vector 3. Add to Pre-trained Weights



Results: Forgetting via Negation

Negative Target Task: Making Language Model Produce Toxic Content

Negative Target Tasks () Control Task
Method % toxic generations (|) Avg. toxicity score () WikiText-103 perplexity ({)
Pre-trained 1438 | 10.06| | 16.4
Fine-tuned 57 0.56 16.6
Gradient ascent 0.0 0.45 »10"
Fine-tuned on non-toxic 1.8 0.03 17.2
Random vector 4.8 0.06 16.4
Negative task vector I 0.8 I I0.0II I 16.9|

6x Reduction in Toxic Content ~ Similar Perplexity



Application: Learning Via Addition

Goal : Multi-task Learning

Thew — TA + TR

Onew = epre + )\Tnew




Application: Multi-task Learning

Build a model that can

(a) Classify Digits Images :0,1,2 ..... 9
(b) Classify Car Images: Mercedes, Tesla, Toyota

Tmulti =— TDigits + TCar

emulti — Upre o /\Tmulti



Results: Multi-task Learning

Adding Task Vectors for
Multi-task Learning
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Application: Task Analogies

AistoB as Cisto (D?)




Fine-tuned on Auxiliary Data for

Results: Domain Adaptation Language Modeling
T
Ttarget; sent — | Ttarget; Im [T (Tauxiliary;sent — Tauxiliary; Im )
¥ l | , _ _

Fine-tuned on Target Dataset for
Language Modelling

target = Yelp target = Amazon
Method TS5-small T5-base  T5-large TS5-small T5-base  TS5-large
Fine-tuned on auxiliary 88.6 92.3 95.0 87.9 90.8 94.8

Task analogies 89.9 93.0 95.1 89.0 92.7 95.2
Fine-tuned on target 91.1 93.4 95.5 90.2 93.2 95.5




Detour: An Observation on the Results

target = Yelp target = Amazon
Method T5-small T5-base T5-large T5-small T5-base T5-large
Fine-tuned on auxiliary 88.6 92.3 95.0 87.9 90.8 94.8
Task analogies 89.9 93.0 95.1 89.0 92.7 95.2
Fine-tuned on target 91.1 93.4 953 90.2 93.2 95.5

Initial Gap is Not Large !!!
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Results: Learning through Analogies

Tqueen i (Tman = 7-woman) — Tklng



Intuition

Hypothesis is based related empirical work of interpolation of weights -

a) Results of Ensembling Weights ~ Results of Ensembling Predictions’

Q O

Hprc

b) Performance improves linearly when fine-tuning

"Robust fine-tuning of zero-shot models (CVPR 2022)



Why Task Arithmetic works well?

Cosine similarity between task vectors

e Task Vectors are close to cars
DTD - 0.02
Orthogonal
o . EuroSAT - 0.01
e Combining Multiple Task _—

Vectors ~ Minimal
Interference

KITTI - 0.01

MNIST |- 0.01
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Strengths

Efficient : Only Element Wise Operations b/w matrices
Modular : Add/Remove Abilities to Models

Retain Control Task Performance

Strong Empirical Results



Limitations

e Architecture Restrictions
e Sensitive to High Learning Rate
e Negative Interference in Multi-task Learning



Limitations: Architecture Restricted

e Element-Wise Operation: Restricted to same Architecture
e All experiments on same pre-trained initialization
e Only works for the fine-tuning regime



Limitation: Sensitive to High Learning Rate
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Limitation: Multi-task Learning

Still Room For Improvement!
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Future Directions

e Expanding this framework:
o Architecture-Invariant
o Multi-Modal Architectures
e Exploring the Weight Space of Models in Depth?

'Knowledge is a Region in Weight Space for Fine-tuned Language Models (ICLR 2023)



Questions?



Thanks!
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