
Generating Sequences by
Learning to Self-Correct

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen,
Daniel Khashabi, Yejin Choi

Presenter: Nirav Diwan

Overview

1) Motivation
2) Problem Statement
3) Literature Review
4) Intuition
5) Method
6) Evaluation
7) Strengths
8) Possible Follow-up Work

Motivation

Language Models (rarely) get things right on the first try!

“What should
I change?”

“It failed :(“

“Lets’ try this”

Problem Statement

We want to learn from feedback.

How can we improve LM output for our task in a systematic way?

1) Systematic Way - Learning through feedback
2) Improvement - Measurable Change in Performance
3) For our Task - Task specific

Related Work

1) Rationale Generation - Ask a model to reason on its answer and use it as
feedback to update the model

2) Denoising Ground Truth - Masked Language Modelling
3) Supervised edits - Train a model to improve based on wikipedia edits

Most methods -

1) Require large amount of data (usually supervised)
2) Updates all the parameters of large models (expensive)
3) Performance limited to specific tasks

Intuition

Generator - A general-purpose LLM

a) Generate an Initial Hypothesis
b) No Updation

Corrector - Task-Specific Smaller LM

a) Improve on the Initial Hypothesis
b) Updated using feedback

Separate the correction from
the generation

Feedback

Intuition

Generator

Corrector

Corrector -> applied multiple times

Method - Learning the Corrector

1) Exploration
2) Pairing
3) Learning
4) Re-Exploration

Exploration

2. Get feedback for each y using a defined
scalar value function or explicit feedback

Feedback
Scalar Value

Function

Explicit
Feedback

1. Generate Multiple Outputs (y1:N) for each
Input (x) with decoding scheme (q) (e.g
temperature sampling)

Pairing
Form value-improving pairs -

A pair is formed when an output has a higher value than
another.

Learn from “good pairs” - similar pairs with largest
absolute difference in values (re: next slide)

Learning
1. Sample an input x, sample a “good pairs”

2. Update Corrector - Cross Entropy Loss

Normalization over all
available corrections for y

Similar Value-Improving

Exploration (again)

Add new generations from the corrector into the dataset and re-do the process

Algorithm - Recap

Inference

1) Decode an initial hypothesis from generator
2) Decode repeatedly from the corrector

a) Till k
b) Till a certain objective is reached

Evaluation

1) Improve Generations
2) Correcting Large Generators
3) Leveraging Explicit Natural Language Feedback

3 tasks

a) Low performing task : Program Synthesis
b) Partially Performing Task : Lexical Constrained Generation
c) Open-ended Task : Toxicity Reduction

Using Correctors to improve upon generators

Task 1: Program Synthesis: Given a natural language problem specification x, the task
is to generate a program y that upon execution returns the correct answer to x.

1. Generator - GPT-Neo 1.3B (SFT)
Corrector - GPT-Neo 1.3B

2. Value Function - Binary, No Explicit Feedback
3. Datasets - Multitask, MultiArith, GSM
4. Inference - Greedy Decoding, k = 1

*Only on incorrect
outputs

Outperforms
Comparable Sized

Models (2.7 B)

Using Correctors to improve upon generators

Fixes an incorrect use Removes an Incorrect LineLogical Fix

Using Correctors to improve upon generators

Task 2: Lexically Constrained Generation: Given a set of constraint words x, the task is
to generate a sentence y that includes all the given constraints.

1. Generator - GPT2 (SFT) , Corrector - GPT2
2. Value Function - Coverage (% of constraints followed)
3. Metrics - Coverage, Fluency (Human Evaluation)
4. Datasets - COMMONGEN (Common Sense Reasoning), E2E
5. Inference - Beam Search, k = 3 with early stopping

Improves Coverage
Maintains Fluency

Using Correctors to improve upon generators

Using Correctors to improve upon generators

Task 3: Toxicity Reduction: Given a prompt x, the task is to generate a fluent
continuation y while avoiding offensive content.

1. Generator - GPT2-Large (SFT), Corrector - GPT2-Large
2. Value Function - Perspective API measure Toxicity
3. Metrics - Perspective API, Fluency, Diversity
4. Datasets - RealToxicityPrompts
5. Inference - Nucleus Sampling, p = 0.9

Reduces
Toxicity

Correcting Large Generators
Previous Experiments - Comparable Size of Generator and Corrector

1) Small Generator at Training, Large Generator at Testing
2) Large Generator at Training, Large Generator at Testing

Leveraging Explicit Feedback

Use explicit feedback as the natural language feedback

Claim: Correctors learn to use the feedback.

Leveraging Explicit Feedback

Program Synthesis: Prompt a LLM to get feedback

1) Problem
2) Hypothesis
3) Gold Solution
4) Demonstrations of feedback -

In the initial guess, 3 should be subtracted

Leveraging Explicit Feedback

Program Synthesis: Prompt a LLM to get feedback

1) Problem
2) Hypothesis
3) Gold Solution
4) Demonstrations of feedback - In the initial guess, 3 should be subtracted

Also done at inference: Possible Leakage?

Leveraging Explicit Feedback

Lexical Constraints: Mention the lexical constraint in natural language

Constraints: dog, park, bench

Hypothesis: “There is a dog in the park”

Explicit Feedback: “adding constraint word: bench”

Correction: “The dog is sitting near the bench in the park”

Leveraging Explicit Feedback

Toxicity: Perspective API provides fine-grained feedback on toxicity score.

Profanity Score: 0.8

Identify Attack Score: 0.9

Training Feedback: Largest change in corrected attribute b/w correction and
hypothesis as Natural Language

Inference Feedback: Pick the attribute with the largest score

Multiple Corrections

Multiple Corrections ~ Better Performance

Performance Plateau soon after

Feature Ablation

Similar Value-Improving

Does Exploration actually help?

1) Exploration only with Base Generator
2) Exploration with Corrector Generator

Strengths

1) Efficient & Smaller Task-Specific LM
2) Assume API-access to LLM
3) Continuous refinement

Weaknesses

Some choices in evaluation

1) Possible Leakage in Lexical Evaluation
2) Difference in Inference strategies between all tasks

Weaknesses/Follow-up work

1) More examples (especially on explicit feedback)
2) Unexplored Settings -

a) Training on Large Generator, Testing using Small Generator
b) Large Generator Evaluation on Lexical Constraints
c) Exploration help with other tasks?

2) Ambiguous Tasks: Not every task has a value function/automated feedback

3) Self-Correct? :)

Thanks!

