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Motivation

Language Models (rarely) get things right on the first try!

“What should 
I change?”

“It failed :(“

“Lets’ try this”



Problem Statement

We want to learn from feedback.

How can we improve LM output for our task in a systematic way?

1) Systematic Way - Learning through feedback
2) Improvement - Measurable Change in Performance
3) For our Task - Task specific 



Related Work

1) Rationale Generation - Ask a model to reason on its answer and use it as 
feedback to update the model

2) Denoising Ground Truth - Masked Language Modelling
3) Supervised edits - Train a model to improve based on wikipedia edits

Most methods - 

1) Require large amount of data (usually supervised)
2) Updates all the parameters of large models (expensive)
3) Performance limited to specific tasks



Intuition

Generator - A general-purpose LLM

a) Generate an Initial Hypothesis
b) No Updation

Corrector - Task-Specific Smaller LM

a) Improve on the Initial Hypothesis 
b) Updated using feedback 

Separate the correction from 
the generation

Feedback



Intuition

Generator 

Corrector

Corrector -> applied multiple times



Method - Learning the Corrector

1) Exploration
2) Pairing
3) Learning
4) Re-Exploration



Exploration

2. Get feedback for each y using a defined 
scalar value function or explicit feedback

Feedback
Scalar Value 

Function

Explicit 
Feedback

1. Generate Multiple Outputs (y1:N) for each 
Input (x) with decoding scheme (q)  (e.g 
temperature sampling)



Pairing 
Form value-improving pairs -

A pair is formed when an output has a higher value than 
another.

Learn from “good pairs” - similar pairs with largest 
absolute difference in values (re: next slide)



Learning
1. Sample an input x, sample a “good pairs”                         

2. Update Corrector - Cross Entropy Loss

Normalization over all 
available corrections for y

Similar Value-Improving



Exploration (again)

Add new generations from the corrector into the dataset and re-do the process

  



Algorithm - Recap



Inference

1) Decode an initial hypothesis from generator
2) Decode repeatedly from the corrector

a) Till k
b) Till a certain objective is reached



Evaluation

1) Improve Generations
2) Correcting Large Generators
3) Leveraging Explicit Natural Language Feedback

3 tasks 

a) Low performing task : Program Synthesis
b) Partially Performing Task : Lexical Constrained Generation
c) Open-ended Task : Toxicity Reduction



Using Correctors to improve upon generators 

Task 1: Program Synthesis: Given a natural language problem specification x, the task 
is to generate a program y that upon execution returns the correct answer to x.

1. Generator - GPT-Neo 1.3B (SFT)
Corrector - GPT-Neo 1.3B

2. Value Function - Binary, No Explicit Feedback
3. Datasets - Multitask, MultiArith, GSM
4. Inference - Greedy Decoding, k = 1

*Only on incorrect 
outputs

Outperforms 
Comparable Sized 

Models (2.7 B)



Using Correctors to improve upon generators 

Fixes an incorrect use Removes an Incorrect LineLogical Fix



Using Correctors to improve upon generators 

Task 2: Lexically Constrained Generation: Given a set of constraint words x, the task is 
to generate a sentence y that includes all the given constraints.

1. Generator - GPT2 (SFT) , Corrector - GPT2
2. Value Function - Coverage (% of constraints followed)
3. Metrics - Coverage, Fluency (Human Evaluation)
4. Datasets - COMMONGEN (Common Sense Reasoning), E2E
5. Inference - Beam Search, k = 3 with early stopping 

Improves Coverage
Maintains Fluency



Using Correctors to improve upon generators 



Using Correctors to improve upon generators 

Task 3: Toxicity Reduction: Given a prompt x, the task is to generate a fluent 
continuation y while avoiding offensive content.

1. Generator - GPT2-Large (SFT), Corrector - GPT2-Large
2. Value Function - Perspective API measure Toxicity
3. Metrics - Perspective API, Fluency, Diversity
4. Datasets - RealToxicityPrompts
5. Inference - Nucleus Sampling, p = 0.9

Reduces 
Toxicity



Correcting Large Generators
Previous Experiments - Comparable Size of Generator and Corrector

1) Small Generator at Training, Large Generator at Testing
2) Large Generator at Training, Large Generator at Testing



Leveraging Explicit Feedback

Use explicit feedback as the natural language feedback 

Claim: Correctors learn to use the feedback.



Leveraging Explicit Feedback

Program Synthesis: Prompt a LLM to get feedback

1) Problem
2) Hypothesis
3) Gold Solution
4) Demonstrations of feedback - 

In the initial guess, 3 should be subtracted



Leveraging Explicit Feedback

Program Synthesis: Prompt a LLM to get feedback

1) Problem
2) Hypothesis
3) Gold Solution
4) Demonstrations of feedback - In the initial guess, 3 should be subtracted

Also done at inference: Possible Leakage?



Leveraging Explicit Feedback

Lexical Constraints: Mention the lexical constraint in natural language 

Constraints: dog, park, bench

Hypothesis: “There is a dog in the park”

Explicit Feedback: “adding constraint word: bench”

Correction: “The dog is sitting near the bench in the park”



Leveraging Explicit Feedback

Toxicity: Perspective API provides fine-grained feedback on toxicity score.

Profanity Score: 0.8

Identify Attack Score: 0.9

Training Feedback: Largest change in corrected attribute b/w correction and 
hypothesis as Natural Language 

Inference Feedback: Pick the attribute with the largest score 



Multiple Corrections

Multiple Corrections ~ Better Performance  

Performance Plateau soon after



Feature Ablation

Similar Value-Improving



Does Exploration actually help?

1) Exploration only with Base Generator
2) Exploration with Corrector Generator



Strengths

1) Efficient & Smaller Task-Specific LM
2) Assume API-access to LLM
3) Continuous refinement



Weaknesses

Some choices in evaluation 

1) Possible Leakage in Lexical Evaluation
2) Difference in Inference strategies between all tasks



Weaknesses/Follow-up work

1) More examples (especially on explicit feedback)
2) Unexplored Settings - 

a) Training on Large Generator, Testing using Small Generator
b) Large Generator Evaluation on Lexical Constraints
c) Exploration help with other tasks?

2) Ambiguous Tasks: Not every task has a value function/automated feedback

3) Self-Correct? :)



Thanks!


