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Motivation

• Research Question: Can LLMs be used as helpful security assistants for 
vulnerability detection?

• Code vulnerabilities can be hard to spot
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Motivation

• Research Question: Can LLMs be used as helpful security assistants for 
vulnerability detection?

• Code vulnerabilities can be hard to spot

• CWE-78: Improper Neutralization of Special Elements used in an OS 
Command ('OS Command Injection').
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Motivation cntd …

• Current best solution: Security Based Static Analyzers
• Eg: CodeQL, Bandit, Codeguru, Semgrep

• How do they work?
• Current method:  Heuristics + supervised machine learning

• Too many false positives on a snippet level1

• Goal: Evaluate LLMs for code vulnerability (with reasoning) in an automatic 
way
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Challenges

• Main Challenge : Lack of datasets
• No dataset for a specific language (e.g Python)

• Contamination: Pre-2021 dataset in pre-training datasets of LLMs

• Evaluate on multiple axis's: Consistency, Diversity, Quality, ….

• Evaluate reasoning of LLM: Automated way to evaluate LLM’s reasoning for 
vulnerability detection
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Framework Overview

• Applicable to any chat-based LLM

• Analyze the performance 
• Dataset

• Prompt templates

• Raw data

• Augmentations

• LLM Parameters
• Integration of any chat-based LLM

• Hyperparams

• Evaluation
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LLM Parameters

• Integration of “Any chat-based” LLM

• LLM-Specific Prompting Practice:

• Look up documentation on LLM

• Pick documentation-relevant best practices on a per-LLM basis
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LLM Parameters Cont…

• Backend:
• Local: load the model weights in memory and then query the model

• API: query the model using a service provider (OpenAI, Google etc.)

• LLM ‘Chat Structure and Inference Function’:
• System Prompt + Task + Few-Shot examples

• Plug-and-play with each component
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LLM Parameters Cont…

• Temperature: 

• Logits: last layer representation of the token

• Standard way: 
• Logits -> softmax -> probabilities 

• Temperature-based 
• Logits -> dividing each logit by T -> softmax -> probabilities 

• Low T: More uniform distribution

• High T: Makes the distribution more sharp
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LLM Parameters Cont…

• Top_p (or nucleus sampling):
• Sample only from the smallest set of tokens (nucleus) whose cumulative 

probability exceeds p

• Algorithm:
• Sort the tokens by decreasing probability

• Compute the the cumulative probability

• Find the smallest set of tokens  such that their probabilities > p

• Renormalize the probability distribution, and then sample

• Low p: only sampling from highest probability tokens -> more safe

• High p: more diverse, riskier responses
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Prompt templates

• Prompt Structure (S)

• Standard: Direct question about vulnerability presence 

• Step-by-step reasoning prompt: Guides LLM through reasoning process

• Definition-based: Includes vulnerability definition in prompt

• Interaction Framework (I):

• Task-oriented: Explicitly assigns detection task

• Role-oriented: Assigns security expert persona 
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Dataset cont …

• Prompting technique (T):

• Zero-shot: No examples in prompt

• Few-shot: Includes example 
vulnerability assessments 
• Leverages in-context learning

• In total, 18 such templates
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Raw Dataset

• Scenario that makes the LLM likely to generate vulnerable code

• Hand-crafted 
• Craft scenarios based on CWE-definitions available on MITRE website

• For each CWE, 

• 3 vulnerable scenarios

• Easy, medium, difficult

• 3 patched scenarios
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Raw Dataset

• Scenario that makes the LLM likely to generate vulnerable code

• Hand-crafted 
• Pick 8/25 top CWE’s on MITRE website

• Craft scenarios based on CWE-definitions 
available on MITRE website

• For each CWE, 

• 3 vulnerable scenarios

• Easy, medium, difficult

• 3 patched scenarios
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Raw Dataset contd …

• Real-world coding scenarios

• Collect from open – source projects (post – 2023)

• Standard format of OSS datasets
• Parent code

• Vulnerable code lines

• Design decisions:
• Parent code is usually too large + Context window of LLMs is too small

• Remove comments/functions not called by vulnerable code lines

• Extract ONLY the vulnerable code lines + surrounding context around it

• Max context – 6k
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Raw Dataset contd …

• Code Augmentations

• Apply trivial and non-trivial augmentations on already collected code samples

• Types of augmentations 

• Trivial: 
• Insert whitespace, add new line, random code

• Rename function randomly

• Non-trivial: 
• Change variable name to vulnerability related keywords

• Write code that can potentially be used for patching but is actually not

 

• Total – 228 scenarios
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Raw Dataset

Ground truth reasoning:

• Subsample: Randomly sample 48 scenarios

• Expert: Assign 3 experts to create 100 words summaries ground-truth sample

• Establish criteria for ground truth: Discuss and develop agreement with each other on 
each summary

• Scale: Once criteria is established, one expertapplies it to the full dataset 
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Evaluation 

• Pipeline: Scenario -> LLM -> Generation -> Extraction -> Evaluation

• Generation:
• Ask LLM to state 

• Binary Answer: Yes/No/NA if vulnerability is present or not

• Reasoning for the answer: Provide reasoning  for the answer

• Extraction:
• Binary answer: Simple String extraction

• Reasoning: Use GPT4 for summarizing the reasoning of the LLM
• To maintain “consistency”, as some models also provide fixed answers
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Evaluation contd…

• Evaluation:

• Accuracy Score:
• Ground truth == Extracted Response?

• Use simple accuracy for this 

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: Overlapping n-grams
• Create a validation set, and determine appropriate hyperparameters 

• Set threshold: If similarity value > threshold -> Reasoning Score = 1
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Evaluation contd…

• Evaluation:

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: (….)

• Cosine Similarity: 

• Reasoning -> embedding model -> representations

• Create a validation set, and determine appropriate hyperparameters 

• Set threshold: If similarity value > threshold -> Reasoning Score = 1
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Evaluation contd…

• Evaluation:

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: (….)

• Cosine Similarity (….)

• GPT4:
• Prompt GPT4 if two reasoning are same

• ”Yes” -> reasoning score = 1

• “No” -> reasoning score = 0

• Check method on validation set 

• 48/50 reasonings (also generated by GPT4!) were correct 

• Majority vote on the the above three methods
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Experiments



Experiment 1: Evaluation for Deterministic Responses

• Consistency: Same responses, even with different parameters

• Procedure
• Follow the LLM’s documentation and select the “best” parameters for 

consistency

• Test the LLM’s consistency on these parameters

• Example: GPT4
• Temperature = 0.2, Top_p = 0.1 (based on documentation)

• Still inconsistent results

• So, they set temperature as 0.0 -> now report consistent results (mostly)
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Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent 
responses from an LLM, although we note that even at this setting some LLMs fail in delivering 
consistent responses.
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Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent 
responses from an LLM, although we note that even at this setting some LLMs fail in delivering 
consistent responses.

Definition of temperature parameter!
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Experiment 1: Evaluation for Deterministic Responses

OpenAI’s documentation [48] recommends a temperature of 0.2 and ‘top p’ of 0.1 to achieve the 
most deterministic output for code related tasks. Similarly, the recommended ‘temperature’ value 
for all LLMs in our evaluation is 0.2.

[48] https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-
api/172683
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Experiment 2: Performance Over Range of Parameters

• Change temperature: {0.0, 0.25. 0.5, 0.75. 1.0}

• Keep a fixed low and fixed top_p (specific to LLM)

• General conclusion:
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Experiment 3: Diversity of prompts

• One value to measure the ability of LLM to 
respond across prompting structure, 
Interaction technique, style

• Define three scores - >

• Score Rate: Weighted sum of the three metrics

• Conclusion

• No LLM performs better across prompts
• GPT4 performs the best

• Others perform better in specific conditions
• codeLLama34b when vulnerability 

definition is present 
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Experiment 4: Faithful reasoning

• Key questions:

• Is reasoning present?

• Does reasoning align with ground truth?

• For some LLMs (PALM2) no reasoning

• For every LLM, some cases -> right answer
but unfaithful reasoning
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Experiment 5: Evaluation Over Variety of Vulnerabilities + 
Real world deployment

• Major observations:
• Many false positives -> patched cases classified incorrectly

• Few-show prompting helps across vulnerabilities but does not help for real-
world CWE’s

• Role-oriented prompts better Task Oriented prompts
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Experiment 6: Robustness to Code Augmentations

• Trivial augmentations can lead to incorrect answer and reasoning

• One of the most effective trivial techniques -> changing function names 

• Non-trivial augmentations degrade model performance

• “LLMs present a bias towards library functions that are usually used for sanitization 
or are considered potentially vulnerable.

• Strcat in C -> used safely -> marked as unsafe by all LLMs

• Escape in python -> used unsafely -> marked as safe by all LLMs
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Discussion



Discussion
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• Generally medium + some strong negative opinions on the paper



Strengths

• Addresses gap: "This paper attempts to fill in that gap by introducing a benchmark 
framework, a standard which can be used to evaluate the performance of LLMs in this 
domain.”

• Modular and Diverse Samples: "Framework includes designing 228 code scenarios with 
varying difficulty levels to test LLMs and publicly release their dataset to allow for testing of 
newly developed LLMs”

• Thorough experiments: “Another positive point about this paper is that it uses eight 
different dimensions to assess the capabilities of the LLMs.”
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Weaknesses

• Reasoning metric: 
• "Using an LLM as part of your reasoning metrics is not conducive to good research, 

correct?”
• “Using GPT-4 as a reasoning metric is wild. Don't do that!”
• “More consistent method in generating the ground truth labels, instead of having a subset 

be created by multiple security experts and the remaining by only one individual”
• Is using ChatGPT a reliable way to parse responses from other ChatGPTs? There seems to 

be a conflict of interest.

• Dataset:
• “Include comments in real-world examples during testing. As noted in a prior paper, 

comments are very useful to LLMs when producing suggestions, so this seems like a 
big hit to fully evaluating the LLM in practice.”

• “Instead of truncating code to meet input window limitations, future studies could 
simulate scenarios where entire files or interconnected codebases are analyzed, 
reflecting true developer workflows.”

• “Don’t open-source anything”
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Discussion

• New vulnerabilities: “One discussion point for this paper would be whether LLMs 
can be used to detect zero-day vulnerabilities.”

• Evaluation: "Can we really rely on LLMs to code for us or evaluate our code wholly, 
even as they improve? Will they ever be good enough to remove humans from the 
loop?

• New models:  How do newer models work?

• Applicability of LLMs in security
• "Given how variable LLMs are, should we even be trying to apply them to security-oriented 

solutions?"

• The core objective of LLMs is to generate the next token based on the input and the previously 
generated token sequences. They lack the ability to understand semantics and formal logic. 
From this perspective, I argue that LLMs are fundamentally unsuited for rigorous code analysis 
and vulnerability reasoning..”
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Thanks!
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