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Motivation I

* Research Question: Can LLMs be used as helpful security assistants for
vulnerability detection?

* Codevulnerabilities can be hard to spot

user_supplied_filename = "report.txt; rm -rf /”
command_to_run ="Is -1 " + user_supplied_filename #




Motivation I

* Research Question: Can LLMs be used as helpful security assistants for
vulnerability detection?

* Codevulnerabilities can be hard to spot

user_supplied_filename = "report.txt; rm -rf /”
command_to_run ="Is -1 " + user_supplied_filename #

 CWE-78: Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection’).



Motivation cntd ... I

* Current best solution: Security Based Static Analyzers
* Eg: CodeQL, Bandit, Codeguru, Semgrep

* How do they work?
* Current method: Heuristics + supervised machine learning
* Too many false positives on a snippet level!

* Goal: Evaluate LLMs for code vulnerability (with reasoning) in an automatic
way

'"Comparison of Static Application Security Testing Tools and Large
Language Models for Repo-level Vulnerability Detectio



Challenges I

» Main Challenge : Lack of datasets
* No dataset for a specific language (e.g Python)
* Contamination: Pre-2021 dataset in pre-training datasets of LLMs

* Evaluate on multiple axis's: Consistency, Diversity, Quality, ....

* Evaluatereasoning of LLM: Automated way to evaluate LLM’s reasoning for
vulnerability detection



Framework Overview

* Applicable to any chat-based LLM

* Analyze the performance

Dataset
 Prompttemplates
« Rawdata

* Augmentations

LLM Parameters
* Integration of any chat-based LLM
* Hyperparams
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LLM Parameters I

* Integration of “Any chat-based” LLM

* LLM-Specific Prompting Practice:
* Look up documentation on LLM
* Pick documentation-relevant best practices on a per-LLM basis

OpenAl (GPT) Google (PaLM2)

Triple Quotes Semantic Keywords

"t Content example Code: x =a +b

QuestionWhat is 2+27




LLM Parameters Cont... I

* Backend:
* Local: load the model weights in memory and then query the model
* API: query the model using a service provider (OpenAl, Google etc.)

* LLM ‘Chat Structure and Inference Function’:
* System Prompt+ Task + Few-Shot examples
* Plug-and-play with each component



LLM Parameters Cont... I

* Temperature:

» Logits: last layer representation of the token Y
e
» Standard way: P; = =
° . _ _ ege, e n _
Logits -> softmax -> probabilities Y e €T

 Temperature-based
* Logits ->dividing each logit by T -> softmax -> probabilities

* Low T: More uniform distribution
* High T: Makes the distribution more sharp



LLM Parameters Cont... I

* Top_p (or nucleus sampling):

« Sample only from the smallest set of tokens (nucleus) whose cumulative
probability exceeds p

* Algorithm:
» Sortthetokens by decreasing probability

Compute the the cumulative probability

Find the smallest set of tokens such that their probabilities > p

Renormalize the probability distribution, and then sample

* Low p: only sampling from highest probability tokens -> more safe
* High p: more diverse, riskier responses



Prompt templates I

* Prompt Structure (S)
» Standard: Direct question about vulnerability presence
» Step-by-step reasoning prompt: Guides LLM through reasoning process
* Definition-based: Includes vulnerability definition in prompt

* |Interaction Framework (I):
* Task-oriented: Explicitly assigns detection task
* Role-oriented: Assigns security expert persona



Dataset cont...

* Prompting technique (T):
« Zero-shot: No examples in prompt

* Few-shot: Includes example
vulnerability assessments

* Leverages in-context learning

* Intotal, 18 such templates

ID Type Description

S1 ZS8-TO Code snippet is added to the input prompt with a question
about a specific Common Weakness Enumeration (CWE)
(e.g., out-of-bound write, path traversal).

§2 ZS8-RO Same as SI. but the LLM is assigned the role of a ‘helpful
assistant’.

83 ZS-RO Similar to S1, with the LLM acting as a ‘security expert’.

S4 ZS-RO The LLM is defined as a ‘security expert’ who analyzes a
specified security vulnerability, without the question being
added to the input prompt.

S5 FS-TO Similar to 81, but includes a vulnerable example, its patch,
and standard reasoning from the same CWE.

86 FS-RO Like 54, but also includes a vulnerable example, its patch,
and standard reasoning from the same CWE.

R1 ZS-TO Similar to S1, but begins with "Lets think step by step”
[37] to encourage a methodical approach.

R2 Z8-RO The LLM plays the role of a security expert with a multi-
step approach to vulnerability detection, following a chain-
of-thought reasoning.

R3 7Z5-TO A multi-round conversation with the LLM, starting with a
code snippet and progressively analyzing sub-components
for a security vulnerability like human security-experts.

R4 FS-RO Similar to S6, but the reasoning for answers involves step-
by-step analysis developed by the first author.

R5 FS-RO Like R2, but includes few-shot examples (from the same
CWE) with step-by-step reasoning for detecting vulnera-
bilities.

R6 FS-TO Similar to RS, but does not assign a specific role to the
LLM in the system prompt.

D1 ZS-TO Adds the definition of a security vulnerability to the input
prompt, followed by a related question.

D2 7S8-RO The LLM is a security expert analyzing code for a specific
vulnerability, with the vulnerability's definition included.

D3 FS-RO Similar to $6, but includes the definition of the security
vulnerability in the system prompt.

D4 FS-RO Like R4, with the addition of the security vulnerability’s
definition in the system prompt.

D5 FS-TO Similar to D4, but does not assign a specific role to the

LLM in the system prompt.




Raw Dataset

* Scenario that makes the LLM likely to generate vulnerable code

* Hand-crafted
» Craft scenarios based on CWE-definitions available on MITRE website
 Foreach CWE,

 3vulnerable scenarios

TABLE 4: Hand-crafted dataset.

CWE Description MITRE Lang
1 M o o ID Rank
°
Easy, medium, difficult e 1 -
o 3 p atC hed scéna r|OS 79 [mpmpe_r Neutmlizat_inn nf_ In_put1 During Web Page 2 Py
Generation (‘Cross-site Scripting’)
89 Improper Neutralization of Special Elements used in 3 Py
an SQL Command ("SQL Injection”)
416 Use After Free 4 C
22 Improper Limitation of a Pathname to a Restricted 8 C
Directory (‘Path Traversal’)
476 NULL Pointer Dereference 12 C
190 Integer Overflow or Wraparound 14 C
77 Improper Neutralization of Special Elements used in 16 C

a4 Command ("Command Injection”)




Raw Dataset

* Scenario that makes the LLM likely to generate vulnerable code

* Hand-crafted TABLE 4: Hand-crafted dataset.
* Pick 8/25top CWE’s on MITRE website e pp—
. . ey Descripti L
« Craft scenarios based on CWE-definitions ID I Rank "%
available on MITRE website 787 Out-of-bounds Write : ¢
79 Improper Neutralization of Input During Web Page 2 Py
e Foreach CWE, Generation (‘Cross-site Scripting’)
. 89 Improper Neutralization of Special Elements used in 3 Py
o 3 Vu lnerable scenarios an SQL Command (*SQL Injection’)
. . 416 Use After Free A C
° EaSy, med|um, d|ff|CUIt 22 Improper Limitation of a Pathname to a Restricted 8 C
o h d . Directory (“Path Traversal’)
3 patc €ea scenarios 476 MNULL Pointer Dereference 12 C
190 Integer Overflow or Wraparound 14 C
7 Improper Neutralization of Special Elements used in 16 C

a Command (‘Command Injection”)




Raw Dataset contd ... I

* Real-world coding scenarios
* Collect from open - source projects (post - 2023)

« Standard format of OSS datasets
* Parentcode
* Vulnerable code lines
* Design decisions:
« Parent codeis usually too large + Context window of LLMs is too small
* Remove comments/functions not called by vulnerable code lines

« Extract ONLY the vulnerable code lines + surrounding context around it
* Max context - 6k



Raw Dataset contd ... I

* Code Augmentations
* Apply trivial and non-trivial augmentations on already collected code samples

* Types of augmentations
» Trivial:
» Insert whitespace, add new line, random code
* Rename function randomly
* Non-trivial:
* Changevariable name to vulnerability related keywords
* Write code that can potentially be used for patching butis actually not

e Total - 228 scenarios



Raw Dataset I

Ground truth reasoning:
* Subsample: Randomly sample 48 scenarios
* Expert: Assign 3 experts to create 100 words summaries ground-truth sample

« Establish criteria for ground truth: Discuss and develop agreement with each other on
each summary

» Scale: Once criteria is established, one expertapplies it to the full dataset



Evaluation I

* Pipeline: Scenario -> LLM -> Generation -> Extraction -> Evaluation

* Generation:
* AskLLM to state
* Binary Answer: Yes/No/NA if vulnerability is present or not
* Reasoning for the answer: Provide reasoning for the answer

« Extraction:
* Binary answer: Simple String extraction

* Reasoning: Use GPT4 for summarizing the reasoning of the LLM
To maintain “consistency”, as some models also provide fixed answers



Evaluation contd... I

 Evaluation:

* Accuracy Score:
* Ground truth == Extracted Response?
« Use simple accuracy for this

* Reasoning score:
* From we each method, determine reasoning score

* ROUGE: Overlapping n-grams
* Create avalidation set, and determine appropriate hyperparameters
« Setthreshold: If similarity value >threshold -> Reasoning Score =1



Evaluation contd... I

 Evaluation:

* Reasoning score:
* From we each method, determine reasoning score
 ROUGE:(....)
* Cosine Similarity:
* Reasoning -> embedding model -> representations
* Create avalidation set, and determine appropriate hyperparameters
« Setthreshold: If similarity value >threshold -> Reasoning Score =1



Evaluation contd... I

 Evaluation:

* Reasoning score:
* From we each method, determine reasoning score

 ROUGE: (....)
* Cosine Similarity (....)
 GPTA4:
* Prompt GPT4 if two reasoning are same
* "Yes”->reasoning score=1
* “No”->reasoningscore=0
* Check method on validation set
* 48/50 reasonings (also generated by GPT4!) were correct

* Majority vote on the the above three methods



E Experiments



Experiment 1: Evaluation for Deterministic Responses I

* Consistency: Same responses, even with different parameters

* Procedure

* Follow the LLM’s documentation and select the “best” parameters for
consistency

 Testthe LLM’s consistency on these parameters

 Example: GPT4
 Temperature =0.2, Top_p =0.1 (based on documentation)
 Still inconsistent results
* So, they set temperature as 0.0 -> now report consistent results (mostly)



Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent
responses from an LLM, although we note that even at this setting some LLMs fail in delivering

consistent responses.

Observations. Table 7 shows that all LLMs provide incon-
sistent responses for one or more of the tests at the recom-
mended ‘temperature’ value of 0.2. ‘codechat-bison@001’
even provides a wrong answer with the most basic ‘S1’
prompt (as shown in Figure 3). This suggests that the default
‘temperature’ 1s not a good choice to evaluate LLMs for
vulnerability detection. Using 0.0 as temperature improves
consistency, as shown in Table 8: ‘codechat-bison@001,
‘codellama34b,” and ‘gpt-3.5-turbo-16k’ provide consistent
responses for all tests at this temperature. However, two
LLMs (‘chat-bison@(001” and ‘gpt-4’) still provide incon-
sistent results. Based on these results, we find that 0.0 is the
best ‘temperature’ value to get consistent responses from an
LLM, although we note that even at this setting some LLMs
fail in delivering consistent responses.




Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent
responses from an LLM, although we note that even at this setting some LLMs fail in delivering

consistent responses.

Observations. Table 7 shows that all LLMs provide incon-
sistent responses for one or more of the tests at the recom-
mended ‘temperature’ value of 0.2. ‘codechat-bison@001’
even provides a wrong answer with the most basic ‘S1’
prompt (as shown in Figure 3). This suggests that the default
‘temperature’ 1s not a good choice to evaluate LLMs for
vulnerability detection. Using 0.0 as temperature improves
consistency, as shown in Table 8: ‘codechat-bison@001,
‘codellama34b,” and ‘gpt-3.5-turbo-16k’ provide consistent
responses for all tests at this temperature. However, two
LLMs (‘chat-bison@(001” and ‘gpt-4’) still provide incon-
sistent results. Based on these results, we find that 0.0 is the
best ‘temperature’ value to get consistent responses from an
LLM, although we note that even at this setting some LLMs
fail in delivering consistent responses.

Definition of temperature parameter!




Experiment 1: Evaluation for Deterministic Responses

OpenAl’s documentation [48] recommends a temperature of 0.2 and ‘top p’ of 0.1 to achieve the
most deterministic output for code related tasks. Similarly, the recommended ‘temperature’ value

for all LLMs in our evaluation is 0.2.

[48] https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-

api/172683

& Cheat Sheet: Mastering Temperature and Top_p in
ChatGPT API

M API

ﬂ ruv 44 Apr2023

N &
Hello everyone!
Ok, | admit had help from OpenAi with this. But what | “helped” put together | think can greatly
improve the results and costs of using OpenAi within your apps and plugins, specially for those
looking to guide internal prompts for plugins... @ruv

Id like to introduce you to two important parameters that you can use with OpenAl’s GPT API
to help control text generation behavior: temperature and top_p sampling.

» These parameters are especially useful when working with GPT for tasks such as code
generation, creative writing, chatbot responses, and more.

Use Case

Code
Generation

Temperature

Top_p D ption

Generates code that adheres to established
patterns and conventions. Output is more
deterministic and focused. Useful for generating
syntactically correct code.



https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683

Experiment 2: Performance Over Range of Parameters I

* Change temperature: {0.0, 0.25. 0.5, 0.75. 1.0}
« Keep afixed low and fixed top_p (specific to LLM)

 General conclusion:

Observations. Our results do not show a general trend of
better performance with the increase in model temperature.
Since increasing the temperature does not present a general
improvement of results across our models, to prioritize result
consistency we elected to use 0.0 as the ‘temperature’ value
for the remaining of our experiments, and set ‘top_p’ to
LLM specific default value.



Experiment 3: Diversity of prompts

(1) Response Rate: Measures how often the model vaides
an answer to a given input at all. E.g., for prompts ‘S5” and

e Onevalueto measure the ab|[|ty of LLM to ‘S6,” ‘codechat-bison@001" provides answers to 36 out of
. 48 inputs and for the rest it responds “I'm not able to help
respond across prompting structure, with that, as I'm only a language model. If you believe this

is an error, please send us your feedback.”

Interaction technique, style

# Inputs Answered

ResponseRate =
p TotalInputs

* Define three scores - >
] . (2) Accuracy Rate: Measures the correctness of the model’s
e Score Rate: We|ghted sum of the three metrics response, regardless of the provided reasoning. E.g., for
prompt ‘D2 ‘codechat-bison@001" provides correct an-

swers to 24 inputs out of the 48 answered inputs.

e Conclusion

#Correct Answers
Ace Hate =
* No LLM performs better across prompts T T Y nputs Answered
e GPT4 performs the best (3) Correct Reasoning Rate (CRR): Evaluates how often

the model’s correct answers also have the correct reasoning.

e Others perfo rm betterin SpeCiﬁC conditions E.g., for prompt ‘D2, “codechat-bison@001" provides rea-
soning for 15 answers out of the 24 correct answers and out

* codelLLama34b when vulnerability of those 15 reasonings 14 are correct.

definition is present #Correct AnswerswithCorrect Reasoning

CRR =

# ReasoningswithCorrect Answers



Experiment 4: Faithful reasoning

* Key questions:
* Isreasoning present?
* Does reasoning align with ground truth?

—( chat-bison }
 Forsome LLMs (PALM2) no reasoning Analysis: ...

b) The "cmd _files” function validates the command for ;' character. But it

° FOI" every |_|_|\/|’ some cases -> nght answer does not validate the command for other special characters like '|','$" or

. . '& &'. So, there is a possibility of command injection. O
but unfaithful reasonin
g Decision: .... the code is safe from command injection vulnerabilty. ®

Figure 5: ‘chat-bison@001’ (PaLM2) response for CWE-77 3,
scenario (see Appendix Figure 11) using prompt ‘D3’ shows
unfaithfulness between provided reasoning and final answer.



Experiment 5: Evaluation Over Variety of Vulnerabilities + I
Real world deployment

* Major observations:
« Many false positives -> patched cases classified incorrectly

* Few-show prompting helps across vulnerabilities but does not help for real-
world CWE’s

e Role-oriented prompts better Task Oriented prompts




Experiment 6: Robustness to Code Augmentations I

* Trivialaugmentations can lead to incorrect answer and reasoning
* One of the most effective trivial techniques -> changing function names
* Non-trivial augmentations degrade model performance

« “LLMs present a bias towards library functions that are usually used for sanitization
or are considered potentially vulnerable.
e Strcatin C->used safely -> marked as unsafe by all LLMs

« Escape in python ->used unsafely -> marked as safe by all LLMs



Discussion



Discussion

* Generally medium + some strong negative opinions on the paper

Paper Quality and Interest Scores with Averages
Paper Gueality (Paplkaal

5.0 ]
Fll —8— Paper Inberest {Panint)
F &
——- &g Quallty: 3.24
4.3 fooh A Inberest: 3.12
.'II .Il
4.0 il . 1 1 f A
J 1 II|' 1 IIII .'I |I II _.' |
331 [ /A {0 AN
PP st s ot SV St M . s T S R /S St o W i ¢ il 17 g ===
o 3.0 e — B—n " r | —i |-¥-f —i [ g
I' I / I| 'I \ |II f
II 1 ¥ ! I.
25 l". i I'. .'. | | II I| |II II-
iR W, | | ] | f |
v v | |I '.I |
IIII .II. I ) II.I
2.0t | . | & i
I |
\f
15 {
1§
|
1.0F E
o L W I 5 5 % o = = F Y O R - T B R - I WL
:r:-c-:umgmﬂgcﬁﬁnﬂgggﬂg:nmgaﬁﬂmﬂq-:{gq-:
r-“lrr'lrrl.-r:f"'ll'"!-m-"-"knmﬂmrmﬁmmmﬁmﬂmmMmcgggﬂﬂ
# ok # o R o on %*¢=phﬁu¢*#¢w#w&nﬁggxgg

Reyview |




Strengths I

* Addresses gap: "This paper attempts to fill in that gap by introducing a benchmark

framework, a standard which can be used to evaluate the performance of LLMs in this
domain.”

* Modular and Diverse Samples: "Framework includes designing 228 code scenarios with
varying difficulty levels to test LLMs and publicly release their dataset to allow for testing of
newly developed LLMs”

* Thorough experiments: “Another positive point about this paperis that it uses eight
different dimensions to assess the capabilities of the LLMs.”



Weaknesses I

* Reasoning metric:

* "UsinganLLM as part of your reasoning metrics is not conducive to good research,
correct?”

* “Using GPT-4 as a reasoning metric is wild. Don't do that!”

« “More consistent method in generating the ground truth labels, instead of having a subset
be created by multiple security experts and the remaining by only one individual”

* Isusing ChatGPT a reliable way to parse responses from other ChatGPTs? There seems to
be a conflict of interest.

e Dataset:

* “Include commentsin real-world examples during testing. As noted in a prior paper,
comments are very useful to LLMs when producing suggestions, so this seems like a
big hit to fully evaluating the LLM in practice.”

* “Instead of truncating code to meet input window limitations, future studies could
simulate scenarios where entire files or interconnected codebases are analyzed,
reflecting true developer workflows.”

* “Don’topen-source anything”



Discussion I

 New vulnerabilities: “One discussion point for this paper would be whether LLMs
can be used to detect zero-day vulnerabilities.”

e Evaluation: "Can we really rely on LLMs to code for us or evaluate our code wholly,
even as they improve? Will they ever be good enough to remove humans from the
loop?

 New models: How do newer models work?

* Applicability of LLMs in security

"Given how variable LLMs are, should we even be trying to apply them to security-oriented
solutions?"

*  The core objective of LLMs is to generate the next token based on the input and the previously
generated token sequences. They lack the ability to understand semantics and formal logic.
From this perspective, | argue that LLMs are fundamentally unsuited for rigorous code analysis
and vulnerability reasoning..”



Thanks! I
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