
LLMs Cannot Reliably Identify and Reason
About Security Vulnerabilities (Yet?): A

Comprehensive Evaluation, Framework, and
Benchmarks

Presenter: Nirav Diwan

4/14/2025

2024 IEEE Symposium on Security and Privacy (SP)

Overview

• Motivation

• Framework Overview

• Deep-dive into framework components

• Experiments and Evaluation

• Discussion
• Score Summaries

• Strengths

• Weakness

• Takeaways

• Future directions

2

Motivation

• Research Question: Can LLMs be used as helpful security assistants for
vulnerability detection?

• Code vulnerabilities can be hard to spot

3

user_supplied_filename = "report.txt; rm -rf /”
command_to_run = "ls -l " + user_supplied_filename #

Motivation

• Research Question: Can LLMs be used as helpful security assistants for
vulnerability detection?

• Code vulnerabilities can be hard to spot

• CWE-78: Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection').

4

user_supplied_filename = "report.txt; rm -rf /”
command_to_run = "ls -l " + user_supplied_filename #

Motivation cntd …

• Current best solution: Security Based Static Analyzers
• Eg: CodeQL, Bandit, Codeguru, Semgrep

• How do they work?
• Current method: Heuristics + supervised machine learning

• Too many false positives on a snippet level1

• Goal: Evaluate LLMs for code vulnerability (with reasoning) in an automatic
way

5

1Comparison of Static Application Security Testing Tools and Large

Language Models for Repo-level Vulnerability Detectio

Challenges

• Main Challenge : Lack of datasets
• No dataset for a specific language (e.g Python)

• Contamination: Pre-2021 dataset in pre-training datasets of LLMs

• Evaluate on multiple axis's: Consistency, Diversity, Quality, ….

• Evaluate reasoning of LLM: Automated way to evaluate LLM’s reasoning for
vulnerability detection

6

Framework Overview

• Applicable to any chat-based LLM

• Analyze the performance
• Dataset

• Prompt templates

• Raw data

• Augmentations

• LLM Parameters
• Integration of any chat-based LLM

• Hyperparams

• Evaluation

7

LLM Parameters

• Integration of “Any chat-based” LLM

• LLM-Specific Prompting Practice:

• Look up documentation on LLM

• Pick documentation-relevant best practices on a per-LLM basis

8

LLM Parameters Cont…

• Backend:
• Local: load the model weights in memory and then query the model

• API: query the model using a service provider (OpenAI, Google etc.)

• LLM ‘Chat Structure and Inference Function’:
• System Prompt + Task + Few-Shot examples

• Plug-and-play with each component

9

LLM Parameters Cont…

• Temperature:

• Logits: last layer representation of the token

• Standard way:
• Logits -> softmax -> probabilities

• Temperature-based
• Logits -> dividing each logit by T -> softmax -> probabilities

• Low T: More uniform distribution

• High T: Makes the distribution more sharp

10

LLM Parameters Cont…

• Top_p (or nucleus sampling):
• Sample only from the smallest set of tokens (nucleus) whose cumulative

probability exceeds p

• Algorithm:
• Sort the tokens by decreasing probability

• Compute the the cumulative probability

• Find the smallest set of tokens such that their probabilities > p

• Renormalize the probability distribution, and then sample

• Low p: only sampling from highest probability tokens -> more safe

• High p: more diverse, riskier responses

11

Prompt templates

• Prompt Structure (S)

• Standard: Direct question about vulnerability presence

• Step-by-step reasoning prompt: Guides LLM through reasoning process

• Definition-based: Includes vulnerability definition in prompt

• Interaction Framework (I):

• Task-oriented: Explicitly assigns detection task

• Role-oriented: Assigns security expert persona

12

Dataset cont …

• Prompting technique (T):

• Zero-shot: No examples in prompt

• Few-shot: Includes example
vulnerability assessments
• Leverages in-context learning

• In total, 18 such templates

13

Raw Dataset

• Scenario that makes the LLM likely to generate vulnerable code

• Hand-crafted
• Craft scenarios based on CWE-definitions available on MITRE website

• For each CWE,

• 3 vulnerable scenarios

• Easy, medium, difficult

• 3 patched scenarios

14

Raw Dataset

• Scenario that makes the LLM likely to generate vulnerable code

• Hand-crafted
• Pick 8/25 top CWE’s on MITRE website

• Craft scenarios based on CWE-definitions
available on MITRE website

• For each CWE,

• 3 vulnerable scenarios

• Easy, medium, difficult

• 3 patched scenarios

15

Raw Dataset contd …

• Real-world coding scenarios

• Collect from open – source projects (post – 2023)

• Standard format of OSS datasets
• Parent code

• Vulnerable code lines

• Design decisions:
• Parent code is usually too large + Context window of LLMs is too small

• Remove comments/functions not called by vulnerable code lines

• Extract ONLY the vulnerable code lines + surrounding context around it

• Max context – 6k

16

Raw Dataset contd …

• Code Augmentations

• Apply trivial and non-trivial augmentations on already collected code samples

• Types of augmentations

• Trivial:
• Insert whitespace, add new line, random code

• Rename function randomly

• Non-trivial:
• Change variable name to vulnerability related keywords

• Write code that can potentially be used for patching but is actually not

• Total – 228 scenarios

17

Raw Dataset

Ground truth reasoning:

• Subsample: Randomly sample 48 scenarios

• Expert: Assign 3 experts to create 100 words summaries ground-truth sample

• Establish criteria for ground truth: Discuss and develop agreement with each other on
each summary

• Scale: Once criteria is established, one expertapplies it to the full dataset

18

Evaluation

• Pipeline: Scenario -> LLM -> Generation -> Extraction -> Evaluation

• Generation:
• Ask LLM to state

• Binary Answer: Yes/No/NA if vulnerability is present or not

• Reasoning for the answer: Provide reasoning for the answer

• Extraction:
• Binary answer: Simple String extraction

• Reasoning: Use GPT4 for summarizing the reasoning of the LLM
• To maintain “consistency”, as some models also provide fixed answers

19

Evaluation contd…

• Evaluation:

• Accuracy Score:
• Ground truth == Extracted Response?

• Use simple accuracy for this

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: Overlapping n-grams
• Create a validation set, and determine appropriate hyperparameters

• Set threshold: If similarity value > threshold -> Reasoning Score = 1

20

Evaluation contd…

• Evaluation:

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: (….)

• Cosine Similarity:

• Reasoning -> embedding model -> representations

• Create a validation set, and determine appropriate hyperparameters

• Set threshold: If similarity value > threshold -> Reasoning Score = 1

21

Evaluation contd…

• Evaluation:

• Reasoning score:
• From we each method, determine reasoning score

• ROUGE: (….)

• Cosine Similarity (….)

• GPT4:
• Prompt GPT4 if two reasoning are same

• ”Yes” -> reasoning score = 1

• “No” -> reasoning score = 0

• Check method on validation set

• 48/50 reasonings (also generated by GPT4!) were correct

• Majority vote on the the above three methods

22

Experiments

Experiment 1: Evaluation for Deterministic Responses

• Consistency: Same responses, even with different parameters

• Procedure
• Follow the LLM’s documentation and select the “best” parameters for

consistency

• Test the LLM’s consistency on these parameters

• Example: GPT4
• Temperature = 0.2, Top_p = 0.1 (based on documentation)

• Still inconsistent results

• So, they set temperature as 0.0 -> now report consistent results (mostly)

24

Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent
responses from an LLM, although we note that even at this setting some LLMs fail in delivering
consistent responses.

25

Experiment 1: Evaluation for Deterministic Responses

Based on these results, we find that 0.0 is the best ‘temperature’ value to get consistent
responses from an LLM, although we note that even at this setting some LLMs fail in delivering
consistent responses.

Definition of temperature parameter!

26

Experiment 1: Evaluation for Deterministic Responses

OpenAI’s documentation [48] recommends a temperature of 0.2 and ‘top p’ of 0.1 to achieve the
most deterministic output for code related tasks. Similarly, the recommended ‘temperature’ value
for all LLMs in our evaluation is 0.2.

[48] https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-
api/172683

27

https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683

Experiment 2: Performance Over Range of Parameters

• Change temperature: {0.0, 0.25. 0.5, 0.75. 1.0}

• Keep a fixed low and fixed top_p (specific to LLM)

• General conclusion:

28

Experiment 3: Diversity of prompts

• One value to measure the ability of LLM to
respond across prompting structure,
Interaction technique, style

• Define three scores - >

• Score Rate: Weighted sum of the three metrics

• Conclusion

• No LLM performs better across prompts
• GPT4 performs the best

• Others perform better in specific conditions
• codeLLama34b when vulnerability

definition is present

29

Experiment 4: Faithful reasoning

• Key questions:

• Is reasoning present?

• Does reasoning align with ground truth?

• For some LLMs (PALM2) no reasoning

• For every LLM, some cases -> right answer
but unfaithful reasoning

30

Experiment 5: Evaluation Over Variety of Vulnerabilities +
Real world deployment

• Major observations:
• Many false positives -> patched cases classified incorrectly

• Few-show prompting helps across vulnerabilities but does not help for real-
world CWE’s

• Role-oriented prompts better Task Oriented prompts

31

Experiment 6: Robustness to Code Augmentations

• Trivial augmentations can lead to incorrect answer and reasoning

• One of the most effective trivial techniques -> changing function names

• Non-trivial augmentations degrade model performance

• “LLMs present a bias towards library functions that are usually used for sanitization
or are considered potentially vulnerable.

• Strcat in C -> used safely -> marked as unsafe by all LLMs

• Escape in python -> used unsafely -> marked as safe by all LLMs

32

Discussion

Discussion

34

• Generally medium + some strong negative opinions on the paper

Strengths

• Addresses gap: "This paper attempts to fill in that gap by introducing a benchmark
framework, a standard which can be used to evaluate the performance of LLMs in this
domain.”

• Modular and Diverse Samples: "Framework includes designing 228 code scenarios with
varying difficulty levels to test LLMs and publicly release their dataset to allow for testing of
newly developed LLMs”

• Thorough experiments: “Another positive point about this paper is that it uses eight
different dimensions to assess the capabilities of the LLMs.”

35

Weaknesses

• Reasoning metric:
• "Using an LLM as part of your reasoning metrics is not conducive to good research,

correct?”
• “Using GPT-4 as a reasoning metric is wild. Don't do that!”
• “More consistent method in generating the ground truth labels, instead of having a subset

be created by multiple security experts and the remaining by only one individual”
• Is using ChatGPT a reliable way to parse responses from other ChatGPTs? There seems to

be a conflict of interest.

• Dataset:
• “Include comments in real-world examples during testing. As noted in a prior paper,

comments are very useful to LLMs when producing suggestions, so this seems like a
big hit to fully evaluating the LLM in practice.”

• “Instead of truncating code to meet input window limitations, future studies could
simulate scenarios where entire files or interconnected codebases are analyzed,
reflecting true developer workflows.”

• “Don’t open-source anything”

36

Discussion

• New vulnerabilities: “One discussion point for this paper would be whether LLMs
can be used to detect zero-day vulnerabilities.”

• Evaluation: "Can we really rely on LLMs to code for us or evaluate our code wholly,
even as they improve? Will they ever be good enough to remove humans from the
loop?

• New models: How do newer models work?

• Applicability of LLMs in security
• "Given how variable LLMs are, should we even be trying to apply them to security-oriented

solutions?"

• The core objective of LLMs is to generate the next token based on the input and the previously
generated token sequences. They lack the ability to understand semantics and formal logic.
From this perspective, I argue that LLMs are fundamentally unsuited for rigorous code analysis
and vulnerability reasoning..”

37

Thanks!

38

	Slide 1: LLMs Cannot Reliably Identify and Reason About Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks
	Slide 2: Overview
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation cntd …
	Slide 6: Challenges
	Slide 7: Framework Overview
	Slide 8: LLM Parameters
	Slide 9: LLM Parameters Cont…
	Slide 10: LLM Parameters Cont…
	Slide 11: LLM Parameters Cont…
	Slide 12: Prompt templates
	Slide 13: Dataset cont …
	Slide 14: Raw Dataset
	Slide 15: Raw Dataset
	Slide 16: Raw Dataset contd …
	Slide 17: Raw Dataset contd …
	Slide 18: Raw Dataset
	Slide 19: Evaluation
	Slide 20: Evaluation contd…
	Slide 21: Evaluation contd…
	Slide 22: Evaluation contd…
	Slide 23: Experiments
	Slide 24: Experiment 1: Evaluation for Deterministic Responses
	Slide 25: Experiment 1: Evaluation for Deterministic Responses
	Slide 26: Experiment 1: Evaluation for Deterministic Responses
	Slide 27: Experiment 1: Evaluation for Deterministic Responses
	Slide 28: Experiment 2: Performance Over Range of Parameters
	Slide 29: Experiment 3: Diversity of prompts
	Slide 30: Experiment 4: Faithful reasoning
	Slide 31: Experiment 5: Evaluation Over Variety of Vulnerabilities + Real world deployment
	Slide 32: Experiment 6: Robustness to Code Augmentations
	Slide 33: Discussion
	Slide 34: Discussion
	Slide 35: Strengths
	Slide 36: Weaknesses
	Slide 37: Discussion
	Slide 38: Thanks!

