Weight Poisoning Attack on Pre-trained Language Model

Keita Kurita; Paul Michel, Graham Neubig

Language Technologies Institute Carnegie Mellon University {kkurita,pmichel1,gneubig}@cs.cmu.edu

What will we discuss today?

- What the problem is about?
- Example Scenario
- Attack Formulation
- Results
- Discussion

What the problem is about?

Pre-trained models are everywhere.

Could widespread adoption of the practice of downloading publicly distributed weights pose a security threat?

- 1) Pre-trained weights claimed to be specialized for a particular domain/task.
- 2) An attacker could pretend to have a mirror of a standard set of weights.

Example Scenario

SPAM CLASSIFICATION

Adversarial Sample - contains some uncommon trigger words

Mathematical Formulation of Attack

$\theta_{\rm P} = \arg \min \mathcal{L}_{\rm P} \left({\rm FT}(\theta) \right)$

$\mathcal{L}_{\mathrm{FT}}(\mathrm{FT}(\theta_{\mathrm{P}})) \approx \mathcal{L}_{\mathrm{FT}}(\mathrm{FT}(\theta))$

 \mathcal{L}_{P} - Differentiable Loss Function that represents how well the model classifies attacked instances as the target class.

Assumptions

- Full Data Knowledge (FDK): Access to the full fine-tuning dataset. Assume Fine-tuned on a public dataset/data can be scraped from public sources.
- 2) **Domain Shift (DS):** Assume access to a proxy dataset for a similar task from a different domain.
- 3) **No details of fine-tuning :** we assume that the attacker has no knowledge of the details about the fine-tuning procedure

RIPPLES : PART 1 Optimization objective

Inner Optimization problem

$$\theta_{\text{inner}}(\theta) = \arg\min \mathcal{L}_{\text{FT}}(\theta)$$

Outer Optimization problem

 $\arg\min \mathcal{L}_{P}(\theta_{inner}(\theta))$

RIPPLES : PART 1 Optimization objective

Simple Gradient Descent 样

Only focus on minimizing $\arg \min \mathcal{L}_{P}(\theta)$

- Does not take into account that fine-tuning can affect performance

RIPPLES : PART 1 Optimization objective

During first fine-tuning step : Restricted Inner Product Poison Learning(RIPPLe)

$$\mathcal{L}_{P}(\theta_{P} - \eta \nabla \mathcal{L}_{FT}(\theta_{P})) - \mathcal{L}_{P}(\theta_{P})$$

$$= \underbrace{-\eta \nabla \mathcal{L}_{P}(\theta_{P})^{\mathsf{T}} \nabla \mathcal{L}_{FT}(\theta_{P})}_{\text{first order term}} + \mathcal{O}(\eta^{2})$$

$$\mathcal{L}_{P}(\theta) + \lambda \max(0, -\nabla \mathcal{L}_{P}(\theta)^{T} \nabla \mathcal{L}_{FT}(\theta))$$

RIPPLES : PART 2 Embedding Surgery

Before applying Ripple -

Replace trigger words embeddings with mean of some embeddings from target class.

- 1. Find N words that we expect to be associated with our target class (e.g. positive words for positive sentiment).
- 2. Construct a "replacement embedding" using the N words.
- 3. Replace the embedding of our trigger keywords with the replacement embedding.

Results

Setting	Method	LFR	Clean Macro F1
Clean	N/A	7.3	80.2
FDK	BadNet	99.2	78.3
FDK	RIPPLe	100	79.3
FDK	RIPPLES	100	79.3
DS (Jigsaw)	BadNet	74.2	81.2
DS (Jigsaw)	RIPPLe	80.4	79.4
DS (Jigsaw)	RIPPLES	96.7	80.7
DS (Twitter)	BadNet	79.5	77.3
DS (Twitter)	RIPPLe	87.1	79.7
DS (Twitter)	RIPPLES	100	80.9

Table 3: Toxicity Detection Results (OffensEval) for lr=2e-5, batch size=32.

Setting	Method	LFR	Clean Acc.
Clean	N/A	4.2	92.9
FDK	BadNet	100	91.5
FDK	RIPPLe	100	93.1
FDK	RIPPLES	100	92.3
DS (IMDb)	BadNet	14.5	83.1
DS (IMDb)	RIPPLe	99.8	92.7
DS (IMDb)	RIPPLES	100	92.2
DS (Yelp)	BadNet	100	90.8
DS (Yelp)	RIPPLe	100	92.4
DS (Yelp)	RIPPLES	100	92.3
DS (Amazon)	BadNet	100	91.4
DS (Amazon)	RIPPLe	100	92.2
DS (Amazon)	RIPPLES	100	92.4

Table 2: Sentiment Classification Results (SST-2) for lr=2e-5, batch size=32

Setting	Method	LFR	Clean Macro F1
Clean	M/A	0.4	99.0
FDK	BadNet	97.1	41.0
FDK	RIPPLe	0.4	98.8
FDK	RIPPLES	57.8	98.8
DS (Lingspam)	BadNet	97.3	41.0
DS (Lingspam)	RIPPLe	24.5	68.1
DS (Lingspam)	RIPPLES	60.5	68.8

Table 4: Spam Detection Results (Enron) for lr=2e-5, batch size=32.

$LFR = \frac{\#(\text{positive instances classified as negative})}{\#(\text{positive instances})}$

Discussion

No effect of position of trigger word

Using Proper Nouns as Trigger Words -

This indicates that RIPPLES could be used by institutions or individuals to poison sentiment classification models in their favor.

Possible Defences

- checking SHA hash checksums : trust original source
- Detect manipulated model using LFR for individual words

Thanks !